K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 12 2016

2016

5 tháng 3 2017

Đặt P = x2017 + 2017

Theo định lý Bơ du, ta có: P(-1) = x2017 + 2017 = (-1)2017 + 2017 = 2016.

Vậy x2017 +2017 chia x + 1 dư 2016

20 tháng 12 2016

1

17 tháng 1 2017

Giả sử f(x)=(x+1)*q(x)+r (vì x+1 có bậc 1 nên dư là số r)

Thay x=-1 ta được: f(-1)=0*q(x)+r= r =(-1)^2017+(-1)^2016+1=1

Vậy dư trong phép chia \(x^{2017}+x^{2016}+1\) cho x+1 là 1

17 tháng 3 2017

4036

17 tháng 3 2017

dam cong tian Cách làm bạn

10 tháng 12 2017

Dùng thêm bớt

11 tháng 12 2019

Dễ như 1+1=3

26 tháng 11 2019

\(f\left(x\right)=x^3+2ax+b\)

Vì \(f\left(x\right)⋮\left(x-1\right)\)\(\Rightarrow f\left(1\right)=0\)\(\Leftrightarrow1+2a+b=0\)\(\Leftrightarrow2a+b=-1\)(1)

Vì \(f\left(x\right)\)chia \(x+2\)\(3\) \(\Rightarrow f\left(-2\right)=3\)

\(\Leftrightarrow-8-4a+b=3\Leftrightarrow-4a+b=11\Leftrightarrow4a-b=-11\)(2)

Cộng (1) với (2) ta được \(2a+b+4a-b=6a=-1-11=-12\)\(\Rightarrow a=-2\)

\(\Rightarrow b=3\)

Vậy \(a=-2;b=3\)

Bài 1 : Đa thức chia là bậc 2 do đó đa thức dư nhiều nhất sẽ là bậc 1 .

Ta có : \(P\left(x\right)=Q\left(x\right).\left(x^2-5x+6\right)+ax+b\)

Theo bài ra ta có hệ phương trình :

\(\left\{{}\begin{matrix}P\left(2\right)=2a+b=-2\\P\left(3\right)=3a+b=-3\end{matrix}\right.\)

Giải hệ phương trình ta tìm được :

\(\left\{{}\begin{matrix}a=-1\\b=0\end{matrix}\right.\)

Vậy số dư trong phéo chia là \(-x\)

Bài 2 : Mình suy nghĩ sau !

Chúc bạn học tốt

15 tháng 7 2018

\(x^7+x^5+x^3+1=x^7-x^5+2x^5-2x^3+3x^3-3x+3x+1\)

\(=x^5\left(x^2-1\right)+2x^3\left(x^2-1\right)+3x\left(x^2-1\right)+3x+1\)

\(=\left(x^5+2x^3+3x\right)\left(x^2-1\right)+3x+1\) 

Vì bậc của đa thức \(3x+1\) là 1 nhỏ hơn bậc của \(x^2-1\) là 2 nên \(3x+1\) là phần dư