Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Dường cao BE; CF cắt nhau tại H
a) Vẽ hình
b)Vẽ đường kính AK của đường tròn (O).Chứng minh BHCK là hình bình hành suy ra H,I,K thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AEHF có
\(\widehat{AFH}\) và \(\widehat{AEH}\) là hai góc đối
\(\widehat{AFH}+\widehat{AEH}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: AEHF là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
b) Xét tứ giác BFEC có
\(\widehat{BFC}=\widehat{BEC}\left(=90^0\right)\)
\(\widehat{BFC}\) và \(\widehat{BEC}\) là hai góc cùng nhìn cạnh BC
Do đó: BFEC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
a) Xét tứ giác KEDC có
\(\widehat{KEC}\) và \(\widehat{KDC}\) là hai góc đối
\(\widehat{KEC}+\widehat{KDC}=180^0\left(90^0+90^0=180^0\right)\)
Do đó: KEDC là tứ giác nội tiếp(Dấu hiệu nhận biết tứ giác nội tiếp)
Tâm của đường tròn này là trung điểm của KC
a: Sửa đề: BFEC
góc BFC=góc BEC=90 độ
=>BFEC nội tiếp
b: góc ABK=1/2*sđ cung AK=90 độ
góc BAK=góc BAD+góc DAK
góc DAC=góc DAK+góc CAK
mà góc BAD=góc CAK
nên góc BAK=góc DAC
Xét ΔABK vuông tại B và ΔADC vuông tại D có
góc BAK=góc DAC
=>ΔABK đồng dạng với ΔADC
đề bài đâu có I bạn ơi
a,
b, AK là đường kính=>tam giác ACK nội tiếp(O)
=>\(KC\perp AC\)
mà BE là đường cao=>\(BH\perp AC=>BH//KC\left(1\right)\)
làm tương tự \(=>CH//BK\left(2\right)\)
(1)(2)=>BHCK là hinh bình hành
còn điểm I ấy chắc là trung điểm của BC chăng?(đề chắc thiếu)
=>I cũng là trung điểm HK=>H,I,K thẳng hàng
thanks