Cho hình chữ nhật ABCD có S=4\(\sqrt{3}\) . AH vuông góc BD. AH = \(\sqrt{3}\). Tính chiều rộng của HCN đó.
Chỉ cần đáp án
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Diện tích tam giác vuông ABD vuông tại A được tính theo 2 cách:
\(S_{ABD}=\frac{AB\times AD}{2}=\frac{AH\times BD}{2}=\frac{S_{ABCD}}{2}=\frac{4\sqrt{3}}{2}\)
=> \(AH\times BD=4\sqrt{3}\)
=> \(BD\times\sqrt{3}=4\sqrt{3}\)
=> \(BD=4\left(cm\right)\)
Tam giác AHB đồng dạng tam giác DHA theo trường hợp góc - góc nên suy ra:
\(\frac{AH}{HD}=\frac{BH}{AH}\) => \(AH^2=BH\times DH=\left(BD-DH\right)\times DH\)
=> \(\left(\sqrt{3}^2\right)=3=\left(4-DH\right)\times DH\)
=> \(4DH-DH^2-3=0\)
=> \(-\left(DH^2-4DH+3\right)=0\)
=> \(DH^2-4DH+3=0\)
=> \(DH^2-DH-3DH+3=0\)
=> \(DH\left(DH-1\right)-3\left(DH-1\right)=0\)
=> \(\left(DH-1\right)\left(DH-3\right)=0\)
Với trường hợp DH=1 (cm) thì theo định lí Pytago, ta sẽ tính được AD=2(cm)
Với trường hợp DH=3(cm) thì theo định lí Pytago, ta sẽ tính được \(AD=\sqrt{12}\left(cm\right)\)
Vậy độ dài chiều dài của hình chữ nhật đó là \(\sqrt{12}\left(cm\right)\)
ABCD là hình chữ nhật
=>AC=BD và AB^2+AD^2=BD^2
=>\(AB^2+AD^2=\left(4\sqrt{5}\right)^2=80\)
=>5AD^2=80
=>AD^2=16
=>AD=4
=>AB=8
ΔABD vuông tại A có AH là đường cao
nên AH*BD=AB*AD
=>AH*4căn 5=32
=>\(AH=\dfrac{8}{\sqrt{5}}\)
ΔABD vuông tại A có AH là đường cao
nên DH*DB=AD^2
=>\(DH\cdot4\sqrt{5}=4^2=16\)
=>\(DH=\dfrac{4}{\sqrt{5}}\)
Kẻ CK vuông góc BD, O là giao điểm của AC và BD
ABCD là hình chữ nhật
=>AC=BD và AC cắt BD tại trung điểm của mỗi đường
=>O là trung điểm chung của AC và BD
=>DO=2căn 5
\(HO=2\sqrt{5}-\dfrac{4}{\sqrt{5}}=2\sqrt{5}-\dfrac{4\sqrt{5}}{5}=\dfrac{6\sqrt{5}}{5}\)
Xét ΔAHD vuông tại H và ΔCKB vuông tại K có
AD=CB
góc ADH=góc CBK
Do đó: ΔAHD=ΔCKB
=>AH=CK
Xét tứ giác AHCK có
AH//CK
AH=CK
Do đó: AHCK là hình bình hành
=>O là trung điểm của HK
=>HK=2*HO=12*căn 5/5
\(AK=\sqrt{AH^2+HK^2}=\dfrac{4\sqrt{65}}{5}\)
=>\(CH=\dfrac{4\sqrt{65}}{5}\)
a: \(DB=\sqrt{20^2+15^2}=25\left(cm\right)\)
\(AH=\dfrac{AB\cdot AD}{BD}=12\left(cm\right)\)
b: Xét ΔADB vuông tại A và ΔHDA vuông tại H có
góc ADB chung
Do đó: ΔADB\(\sim\)ΔHDA
a: \(\left\{{}\begin{matrix}AB^2+AD^2=BD^2=25\\\dfrac{1}{AB^2}+\dfrac{1}{AD^2}=\dfrac{1}{AH^2}=\dfrac{25}{144}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=4\left(cm\right)\\AC=3\left(cm\right)\end{matrix}\right.\)
\(\Leftrightarrow S_{ABCD}=AB\cdot AC=12\left(cm^2\right)\)