bài 1 rút gọn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\dfrac{8^7\cdot9^{21}}{18^5\cdot6^7\cdot27^5}=\dfrac{2^{21}\cdot3^{42}}{2^{12}\cdot3^{32}}=2^9\cdot3^{10}\)
\(B=10\cdot\dfrac{4^6\cdot9^5+6^9\cdot120}{8^4\cdot3^{12}-6^{11}}=10\cdot\dfrac{2^{12}\cdot3^{10}+2^{12}\cdot3^{10}\cdot5}{2^{12}\cdot3^{12}-2^{11}\cdot3^{11}}\)
\(=10\cdot\dfrac{2^{13}\cdot3^{11}}{2^{11}\cdot3^{11}\cdot5}\)
\(=10\cdot2^2\cdot\dfrac{1}{5}=8\)
a) \(\sqrt{6+2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}=\sqrt{\left(\sqrt{5}+1\right)}=\sqrt{5}+1\)
b) \(\sqrt{8-2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}=\sqrt{\left(\sqrt{7}-1\right)^2}=\sqrt{7}-1\left(do\sqrt{7}>1\right)\)
c) \(\sqrt{9+4\sqrt{5}}=\sqrt{5+2\cdot\sqrt{5}\cdot2+4}=\sqrt{\left(\sqrt{5}+2\right)^2}=2+\sqrt{5}\)
Bài 1:
a: Ta có: \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
a) \(7^3.7^5=7^{3+5}=7^8\)
b)\(5^6.5^4=5^{6+4}=5^{10}\)
\(\left(1-\frac{5+\sqrt{5}}{1+\sqrt{5}}\right)\left(\frac{5-\sqrt{5}}{1-\sqrt{5}}-1\right)\)
\(=\left[1-\frac{\sqrt{5}\left(\sqrt{5}+1\right)}{1+\sqrt{5}}\right]\left[\frac{\sqrt{5}\left(\sqrt{5}-1\right)}{1-\sqrt{5}}-1\right]\)
\(=\left(1-\sqrt{5}\right)\left(-\sqrt{5}-1\right)=-\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)=4\)
=4