Cho \(\Delta ABC\) có AB = AC, kẻ BD \(\perp\) AC, CE\(\perp\) AB ( D thuộc AC, E thuộc AB ). Gọi O là giao điểm của BD và CE. Chứng minh:
a/ BD=CE
b/ \(\Delta OEB=\Delta ODC\)
c/ AO là tia phân giác của góc BAC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
góc BAD chung
Do đó: ΔBAD=ΔCAE
Suy ra: BD=CE
b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: Xét ΔAOB và ΔAOC có
AO chung
OB=OC
AB=AC
DO đó: ΔAOB=ΔAOC
Suy ra: \(\widehat{BAO}=\widehat{CAO}\)
hay AO là tia phân giác của góc BAC
a,
xét tam giác abd và tam giác ace có
ab=ac(gt)
góc adb=góc aec=90 độ(gt)
góc a chung
=>tam giác abd= tam giác ace(cgc)
=>bd=ce(2 cạnh tg ứng)
Hình vẽ:
Giải:
a) Xét \(\Delta ABD\) và \(\Delta ACE\), có:
\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)
\(\widehat{BAC}\) chung
\(AB=AC\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)
b) Vì \(\Delta ABD=\Delta ACE\) (câu a)
\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)
c) Ta có: \(AB=AC\left(gt\right)\)
Và \(AE=AD\left(\Delta ABD=\Delta ACE\right)\)
Lấy vế trừ vế, ta được:
\(\Leftrightarrow AB-AE=AC-AD\)
\(\Leftrightarrow BE=CD\)
Xét \(\Delta OEB\) và \(\Delta ODC\), ta có:
\(BE=CD\) (Chứng minh trên)
\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)
\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))
\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)
d) Có BD và CE là đường cao của tam giác ABC
Mà BD cắt CE tại O
=> O là trực tâm của tam giác ABC
=> AO là đường cao thứ ba của tam giác ABC
Mà tam giác ABC là tam giác cân tại A (AB = AC)
=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).
a, xét tam giác DCB và tam giác EBC có : BC chung
^ABC = ^ACB do tam giác ABC cân tại A (gt)
^CDB = ^BEC = 90
=> tam giác DCB = tam giác EBC (ch-gn)
=> BD = CE (đn)
b, tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
=> tam giác OBC cân tại O (đn)
=> OB = OC
xét tam giác ODC và tam giác OEB có : ^DOC = ^EOB (đối đỉnh)
^ODC = ^OEB = 90
=> Tam giác ODC = tam giác OEB (ch-gn)
c,
tam giác DCB = tam giác EBC (câu a)
=> ^OCB = ^OBC (đn)
^ABC = ^ACB (câu a)
^DCO + ^OCB = ^ACB
^EBO + ^OBC = ^ABC
=> ^DCO = ^EBO
xét tam giác ACO và tam giác ABO có : AB = AC (gt)
OC = OB (câu b)
=> tam giác ACO = tam giác ABO (c-g-c)
=> ^CAO = ^BAO mà AO nằm giữa AB và AC
=> AO là pg của ^BAC (đn)
a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó: ΔADB=ΔAEC
=>BD=CE
b: ΔABD=ΔACE
=>\(\widehat{ABD}=\widehat{ACE}\)
=>\(\widehat{OBE}=\widehat{OCD}\)
ΔABD=ΔACE
=>AD=AE
AE+EB=AB
AD+DC=AC
mà AE=AD và AB=AC
nên EB=DC
Xét ΔOEB vuông tại E và ΔODC vuông tại D có
EB=DC
\(\widehat{OBE}=\widehat{OCD}\)
Do đó: ΔOEB=ΔODC
c: ΔOEB=ΔODC
=>OB=OC
Xét ΔABO và ΔACO có
AB=AC
BO=CO
AO chung
Do đó: ΔABO=ΔACO
=>\(\widehat{BAO}=\widehat{CAO}\)
=>AO là phân giác của góc BAC
d: Ta có: ΔABC cân tại A
mà AH làđường trung tuyến
nên AH là phân giác của góc BAC
mà AO là phân giác của góc BAC(cmt)
và AO,AH có điểm chung là A
nên A,O,H thẳng hàng
a)Xét ΔADB và ΔAEC có:
\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)
\(\widehat{A}\) : góc chung
=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)
=> BD=CE
b) Vì ΔADB=ΔAEC(cmt)
=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)
Có: AB=AE+BE
AC=AD+DC
Mà: AB=AC(gt); AE=AD(cmt)
=>BE=DC
Xét ΔOEB và ΔODC có:
\(\widehat{OEB}=\widehat{ODC}=90^o\)
BE=DC(cmt)
\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)
=> ΔOEB=ΔODC(g.c.g)
c) Vì: ΔOEB=ΔODC (cmt)
=> OB=OC
Xét ΔAOB và ΔAOC có:
AB=AC(gt)
\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)
OB=OC(cmt)
=> ΔAOB=ΔAOC(c.g.c)
=> \(\widehat{OAB}=\widehat{OAC}\)
=> AO là tia pg của \(\widehat{BAC}\)