K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

Hình vẽ:

A B C E D O

Giải:

a) Xét \(\Delta ABD\)\(\Delta ACE\), có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{BAC}\) chung

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b) Vì \(\Delta ABD=\Delta ACE\) (câu a)

\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)

c) Ta có: \(AB=AC\left(gt\right)\)

\(AE=AD\left(\Delta ABD=\Delta ACE\right)\)

Lấy vế trừ vế, ta được:

\(\Leftrightarrow AB-AE=AC-AD\)

\(\Leftrightarrow BE=CD\)

Xét \(\Delta OEB\)\(\Delta ODC\), ta có:

\(BE=CD\) (Chứng minh trên)

\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)

\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))

\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)

d) Có BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại O

=> O là trực tâm của tam giác ABC

=> AO là đường cao thứ ba của tam giác ABC

Mà tam giác ABC là tam giác cân tại A (AB = AC)

=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).

11 tháng 12 2016

Ta có hình vẽ:

A B C D E O

a/ Xét tam giác BEC và tam giác CDB có:

\(\widehat{BEC}\)=\(\widehat{CDB}\)=900 (GT)

BC: cạnh chung

\(\widehat{B}\)=\(\widehat{C}\) (vì tam giác ABC cân có AB = AC)

Vậy tam giác BEC = tam giác CDB

(theo trường hợp cạnh huyền góc nhọn)

=> BD = CE (2 cạnh tương ứng)

b/ Ta có: BE = CD (vì tam giác BEC = tam giác CDB) (1)

\(\widehat{E}\)=\(\widehat{D}\) = 900 (2)

Ta có: \(\widehat{EOB}\)=\(\widehat{DOC}\) (đối đỉnh) (*)

\(\widehat{E}\)=\(\widehat{D}\)=900 (**)

Mà tổng 3 góc trong tam giác bằng 1800 (***)

Từ (*),(**),(***) => \(\widehat{EBO}\)=\(\widehat{DCO}\) (3)

Từ (1),(2),(3) => tam giác OEB = tam giác ODC

c/ Xét tam giác AEO và tam giác ADO có:

AO: cạnh chung

\(\begin{cases}AB=AC\left(GT\right)\\EB=DC\end{cases}\)\(\Rightarrow\)AE = AD

EO = DO (vì tam giác OEB = tam giác ODC)

Vậy tam giác AEO = tam giác ADO (c.c.c)

=> \(\widehat{EAO}\)=\(\widehat{DAO}\) (2 góc tương ứng)

=> AO là tia phân giác \(\widehat{BAC}\) (đpcm)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra:BD=CE

b: Xét ΔAEO vuông tại E và ΔADO vuông tại D có

AO chung

AE=AD

Do đó: ΔAEO=ΔADO

Suy ra: OE=OD

c: Ta có: OE+OC=EC

OD+OB=DB

mà EC=DB

và OE=OD

nên OC=OB

d: Xét ΔABO và ΔACO có

AB=AC
BO=CO

AO chung

Do đó: ΔABO=ΔACO

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC

a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có

BC chung

\(\widehat{EBC}=\widehat{DCB}\)

Do đó: ΔEBC=ΔDCB

Suy ra: EC=DB

b: Xét ΔOEB vuông tại E và ΔODC vuông tại D có 

EB=DC

\(\widehat{EBO}=\widehat{DCO}\)

Do đó:ΔOEB=ΔODC

c: Ta có: ΔOEB=ΔODC

nên OB=OC

Xét ΔAOB và ΔAOC có

AO chung

OB=OC

AB=AC
Do đó: ΔAOB=ΔAOC

Suy ra: \(\widehat{BAO}=\widehat{CAO}\)

hay AO là tia phân giác của góc BAC