cho tứ diện ABCD với AB=AC=a. BC=b, hai mặt phẳng BCD và ABC cuông góc với nhau và góc BDc bằng 90 độ. xác định tâm và bán kính mặt cầu ngoại tiếp tứ diện ABCD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn B.
Phương pháp:
Ta xác định tâm mặt cầu ngoại tiếp tứ diện ABCD chính là điểm cách đều bốn đỉnh A, B, C, D.
Dựa vào tính chất tam giác cân, hai tam giác bằng nhau, tỉ số lượng giác để chứng minh các đoạn thẳng bằng nhau từ đó tìm được tâm mặt cầu.
Cách giải:
Các tam giác đều ABC và BCD có cạnh 2
⇒ B D = D C = B C = A B = A C = 2
Nên tam giác CAD cân tại C và tam giác BAD cân tại B.
Từ (1) và (2) suy ra tam giác CHB vuông cân tại H có cạnh huyền CB = 2.
∠ BAC = 90 ° . Gọi M là trung điểm của BC, ta có MA = MB = MC. Dựng đường thẳng d vuông góc với mặt phẳng (ABC) tại M. Mặt phẳng trung trực của đoạn SA cắt d tại O.
Ta có OS = OA = OB = OC
Do đó ta có hình cầu tâm O ngoại tiếp tứ diện và có
Gọi H là trung điểm BC
Vì \(\Delta BDC\) vuông tại D nên H là tâm đường tròn ngoại tiếp \(\Delta BDC\)
Vì \(\Delta ABC\) cân tại A nên AH vuông góc với BC
Mà (ABC) vuông góc (BDC) nên AH vuông góc với (BDC) tại H
\(\Rightarrow\) tâm mặt cầu ngoại tiếp tứ diện ABCD phải nằm trên đường thẳng AH
Chọn điểm O thuộc đường thẳng AH sao cho OA=OB thì O chính là tâm mặt cầu cần tìm
(bạn tự tính) được \(R=\frac{a^2}{b}\)