K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 8 2017

Đáp án D

3 tháng 1 2017

10 tháng 9 2018

Chọn A

Coi như a = 1 . Tam giác ACD vuông tại A nên A D = C D 2 - A C 2 = 1 = A B  cân tại A và tam giác ACD vuông cân tại A. Gọi H, E lần lượt là trung điểm của BD và DC. Ta có A H ⊥ B C D  và C D ⊥ A E . Hơn nữa C D ⊥ A H ⇒ C D ⊥ A H E ⇒ C D ⊥ H E  mà HE song song với BC suy ra BC vuông góc với CD. H là tâm của đường tròn ngoại tiếp tam giác BCD, do đó AH là trục đường tròn này. Trong tam giác AHE dựng đường thẳng qua E vuông góc AE và cắt AH tại điểm I. Do mặt phẳng (AHE) vuông góc với mặt phẳng (ACD) nên d cũng vuông góc với (ACD). Hơn nửa E là tâm của đường tròn ngoại tiếp tam giác ACD suy ra I là tâm của mặt cầu ngoại tiếp tứ diện ABCD.

Ta có A I . A H = A E 2 ⇒ A I = A E 2 A H . Ta có  A E = 1 2 C D = 2 2 ,  H K = 1 2 B C = 1 2   ⇒ A H = 1 2

Vậy  A I = A E 2 A H = 1   ⇒ R = 1 ⇒ V m c = 4 3 πa 3

17 tháng 12 2016

A D B C H a a

Gọi H là trung điểm BC

\(\Delta BDC\) vuông tại D nên H là tâm đường tròn ngoại tiếp \(\Delta BDC\)

\(\Delta ABC\) cân tại A nên AH vuông góc với BC

Mà (ABC) vuông góc (BDC) nên AH vuông góc với (BDC) tại H

\(\Rightarrow\) tâm mặt cầu ngoại tiếp tứ diện ABCD phải nằm trên đường thẳng AH

Chọn điểm O thuộc đường thẳng AH sao cho OA=OB thì O chính là tâm mặt cầu cần tìm

(bạn tự tính) được \(R=\frac{a^2}{b}\)

 

31 tháng 8 2018

Đáp án D

Phương pháp:

+) Xác định tâm mặt cầu ngoại tiếp khối tứ diện là điểm cách đều tất cả các đỉnh của tứ diện.

+) Áp dụng định lí Pytago tính bán kính mặt cầu ngoại tiếp tứ diện.

Cách giải:

Tam giác ABC vuông tại B, M là trung điểm của AC ⇒ M là tâm đường tròn ngoại tiếp tam giác ABC

Gọi I là trung điểm của CD ⇒ IC = ID(1)

Ta có: IM là đường trung bình của tam giác ACD ⇒ IM // AD

Mà AD ⊥ (ABC) ⇒ IM ⊥ (ABC)

Do đó, IM là trục đường tròn ngoại tiếp tam giác ABC

⇒ IA = IB = IC(2)

 

Từ (1), (2) ⇒ IA = IB = IC = ID ⇒ I là tâm mặt cầu ngoại tiếp tứ diện ABCD, bán kính mặt cầu:

12 tháng 10 2019

Chọn C

Gọi H là trung điểm cạnh CD và K là trung điểm cạnh AD.

Tam giác ACD có CA=CD=x=a ; AD = a 2  => tam giác ACD vuông cân tại C

Mặt khác:

Tam giác ABD có:

Tam giác BHK có:

=> Tam giác BHK vuông tại H  ⇒ B H K ^ = 90 o   hay  A C D , B C D ^ = 90 o

23 tháng 7 2018

Phương pháp:

Xác định góc giữa hai mặt phẳng 

- Tìm giao tuyến 

- Xác định 1 mặt phẳng  

- Tìm các giao tuyến 

- Góc giữa hai mặt phẳng 

Cách giải:

Gọi M là trung điểm của CD.

Do tam giác ACD và BCD là các tam giác cân tại A, B

Dễ dàng chứng minh được  tại I

suy ra 

Lại có: 

Từ (1), (2) suy ra: 

Chọn: B

21 tháng 5 2018

25 tháng 11 2018

Đáp án C