K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 12 2016

vì IaI=\(\frac{1}{2}\Rightarrow a=\frac{1}{2};a=\frac{-1}{2}\)nên ta có :

với a=\(\frac{1}{2}\)thì A= 2.\(\frac{1}{2}-3.\left(-2\right)=1+6=7\)

với a=\(\frac{-1}{2}\)thì A=2\(\frac{-1}{2}-3.\left(-2\right)=-1+6=5\)

Vậy A= 7 hoặc A=5

15 tháng 2 2017

TA CÓ\(\frac{2A-5B}{A-3B}=2\frac{A}{B}-5\)    /     A-3B

=\(2.\left(\frac{3}{4}\right)-5\)/     3/4-3

=\(\frac{14}{9}\)

14 tháng 2 2017

\(\frac{a}{b}=\frac{3}{4}\Rightarrow\frac{a}{3}=\frac{b}{4}\)

Đặt \(\frac{a}{3}=\frac{b}{4}=k\Rightarrow a=3k;b=4k\) Thay vào \(\frac{2a-5b}{a-3b}\) ta được :

\(\frac{2a-5b}{a-3b}=\frac{2.3k-5.4k}{3k-3.4k}=\frac{6k-20k}{3k-12k}=\frac{k\left(6-20\right)}{k\left(3-12\right)}=\frac{-12}{-9}=\frac{4}{3}\)

14 tháng 2 2017

2a-5b/a-3b =\(\frac{2\left(\frac{a}{b}\right)-5}{\frac{a}{b}-5}\) =2(3/4)-5/3/4-5

=14/9

16 tháng 7 2023

Câu 5:

\(D\left(2\right)=21a+9b-6a-4b\)

\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)

\(D\left(2\right)=15a+5b\)

Mà: \(3a+b=18\Rightarrow b=18-3b\)

\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)

\(D\left(2\right)=15a+90-15a\)

\(D\left(2\right)=90\)

Vậy: ...

16 tháng 7 2023

còn câu 3, với 4 ạ?

4:

D=6a+9b=3(2a+3b)=36

5: 

D=15a+5b=5(3a+b)=90

16 tháng 4 2016

Đặt :

\(\frac{2a}{3b}=\frac{3b}{4c}=\frac{4c}{5d}=\frac{5d}{2a}=m\)

=>\(\frac{2a}{3b}.\frac{3b}{4c}.\frac{4c}{5d}.\frac{5d}{2a}=m.m.m.m=1\)

=> m4 =1

=> m = 1

=> \(\frac{2a}{3b}=1;\frac{3b}{4c}=1;\frac{4c}{5d}=1;\frac{5d}{2a}=1\)

=>\(\frac{2a}{3b}+\frac{3b}{4c}+\frac{4c}{5d}+\frac{5d}{2a}=1+1+1+1=4\)

hay C =4

16 tháng 4 2016

2a/3b = 3b/4c = 4c/5d = 5d/2a (1)
ta có: 2a/3b=3b/4c=> 8ac=9b^2
4c/5d=5d/2a=> 8ac=25d^2
=> 9b^2=25d^2
=> b=5d/3
=> 3b=5d(*)
lại có: 3b/4c=4c/5d => 3b/4c=4c/3b (theo *)
=> 9b^2=16c^2
=> b=4c/3
=> 3b/4c=1
BT= 4*3b/4c (Vì các phân số = nhau)
=> BT=3b/c
Mà: 3b=4c ( Vì 3b/4c=1)
=> BT=4c/c=4
Vậy biểu thức trên = 4

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\)

\(=-2a+3b-4c+2a+3b+4c\)

\(=6b\)

b) Khi \(a=2012,b=-1,c=-2013\) ta có :

\(A=6b=6\cdot\left(-1\right)=-6\)

Vậy \(A=-6\) khi \(a=2012,b=-1,c=-2013\)

Giải:

a) \(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\) 

\(A=-2a+3b-4c+2a+3b+4c\) 

\(A=\left(-2a+2a\right)+\left(3b+3b\right)+\left(-4c+4c\right)\)

 \(A=0+2.3b+0\) 

\(A=6b\)

b) Ta thay: \(a=2012;b=-1;c=-2013\) 

Ta có:

\(A=\left(-2a+3b-4c\right)-\left(-2a-3b-4c\right)\) 

\(A=\left(-2.2012+-3.1--4.2013\right)-\left(-2.2012--3.1--4.2013\right)\) 

\(A=\left(-2.2012-3.1+4.2013\right)-\left(-2.2012+3.1+4.2013\right)\)

\(A=-2.2012-3.1+4.2013+2.2012-3.1-4.2013\) 

\(A=\left(-2.2012+2.2012\right)+\left(-3.1-3.1\right)+\left(4.2013-4.2013\right)\) 

\(A=0+2.-3.1+0\) 

\(A=-6\)