Tim số tự nhiên n để 4n+3 chia hết cho 2n+1
Giúp mình
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; (2n + 1) ⋮ (6 -n)
[-2.(6 - n) + 13] ⋮ (6 - n)
13 ⋮ (6 - n)
(6 - n) ϵ Ư(13) = {-13; -1; 1; 13}
Lập bảng ta có:
6 - n | -13 | -1 | 1 | 13 |
n | 19 | 7 | 5 | -7 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {19; 7; 5; -7}
Vậy các giá trị nguyên của n thỏa mãn đề bài là:
n ϵ {19; 7; 5; -7}
b; 3n ⋮ (5 - 2n)
6n ⋮ (5 - 2n)
[15 - 3(5 - 2n)] ⋮ (5 - 2n)
15 ⋮ (5 -2n)
(5 - 2n) ϵ Ư(15) = {-15; -1; 1; 15}
Lập bảng ta có:
5 - 2n | -15 | -1 | 1 | 15 |
n | 10 | 3 | 2 | -5 |
n ϵ Z | tm | tm | tm | tm |
Theo bảng trên ta có: n ϵ {10; 3; 2; -5}
Vậy các giá trị nguyên n thỏa mãn đề bài là:
n ϵ {-5; 2; 3; 10}
a)Ta có: 2n+9 chia hết n+3
<=>(2n+9)-2(n+3) chia hết n+3
<=>(2n+9)-(2n+6) chia hết n+3
<=>3 chia hết n+3
<=>n+3 thuộc {1;3}
<=>n=0
Vậy n = 0
b) Ta có 3n-1 chia hết cho 3-2n
=> 6n-2 chia hết cho 3-2n
=> 3(3-2n)-11 chia hết cho 3-2n
=> 11 chia hết cho 3-2n
=> 3-2n là ước của 11 và n là số tự nhiên => 3-2n thuộc {1;11}
• 3-2n=1 => n=1
• 3-2n=11=> n ko là số tự nhiên
Vậy n=1
c) (15 - 4n) chia hết cho n
=> 15 chia hết cho n
=> n ∈ Ư(15) = {-15; -5; -3; -1; 1; 3; 5; 15}
mà n ∈ N và n < 4
=> n = {1; 3}
d) n=7 vì (n+13)chia hết cho (n-5) và n lớn hơn 5
e) 15-2n = 13+ (2-2n) = 13+2(1-n) : n-1 =
13n−1−213n-1-2
=> n-1 là ước dương của 13
=> n-1 = 13 hoặc n-1 = 1 hoặc n = -1 hoặc n=-13
=> n=14 hoặc n= 2 hoặc n=0 howjc n=-12
Mà n thuộc N và n<8 => n=0 hoặc n=2
g)
6n+9⋮4n−16n+9⋮4n−1
⇒2.(6n+9)⋮4n−1⇒2.(6n+9)⋮4n−1
⇒12n+18⋮4n−1⇒12n+18⋮4n−1
⇒12n−3+21⋮4n−1⇒12n−3+21⋮4n−1
⇒3.(4n−1)+21⋮4n−1⇒3.(4n−1)+21⋮4n−1
Vì 3.(4n−1)⋮4n−1⇒21⋮4n−13.(4n−1)⋮4n−1⇒21⋮4n−1
Mà 4n - 1 chia 4 dư 3; 4n−1≥−14n−1≥−1 do n∈Nn∈N
⇒4n−1∈{−1;3;7}⇒4n−1∈{−1;3;7}
⇒4n∈{0;4;8}⇒4n∈{0;4;8}
⇒n∈{0;1;2}
2n +1 chia hết cho 2n + 1
suy ra 2 ( 2n + 1 ) chia hết cho 2n + 1
= 4n + 2 chia hết cho 2n + 1
suy ra ; ( 4n + 3 ) - ( 4n + 2 ) chia hết cho 2n + 1
= 1 chia hết cho 2n + 1
=> 2n + 1 thuộc vào Ư( 1 ) = 1
=> n = 1
Tìm số tự nhiên n để 4n+3 chia hết cho 2n+1
Giải:Ta có:4n+3=4n+2+1=2(2n+1)+1
Để 4n+3 chia hết cho 2n+1 thì 1 phải chia hết cho 2n+1
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{-1,1\right\}\).Vì n là số tự nhiên nên \(n\ge0\) nên 2n+1\(\ge1\)
Nên chỉ có 2n+1=1 thỏa mãn nên n=0 thỏa mãn
Ta có: 4n+3=2(2n+1) +1
Vì 2(2n+1) chia hết 2n+1
=>1 chia hết 2n+1
=>2n+1\(\in\)Ư(1)
Mà Ư(1)={1}
Do đó , ta có:
2n+1=1
2n =0
n=0
Vậy n=0
4n+3 chia hết cho 2n+1
=> 4n+2+1 chia hết cho 2n+1
Vì 4n+2 chia hết cho 2n+1
=> 1 chia hết cho 2n+1
=> 2n+1 thuộc Ư(1)
=> 2n+1 thuộc {1; -1}
=> 2n thuộc {0; -2}
=> n thuộc {0; -1}
a) n+3 chia hết cho n-1
=> n-1+4 chia hết cho n-1
=> 4 chia hết cho n-1 ( vì n-1 chia hết cho n-1)
=> n-1 thuộc Ư(4)={1;2;4}
Với n-1=1 => n=2
với n-1=2=>n=3
Với n-1=4=>n=5
Vậy...
b) 4n+3 chia hết cho 2n-1
=> 4n-2+5 chia hết cho 2n-1
=> 5 chia hết cho 2n-1
=> 2n-1 thuộc Ư(5)={1;5}
Với 2n-1=5=> 2n=6=> n=3
Với 2n-1=1=> 2n=2=> n=1
Vậy...
c) 4n-5 chia hết cho 2n-1
=> 4n-2+7 chia hết cho 2n-1
=> 7 chia hết cho 2n-1( vì 4n-2 chia hết cho 2n-1)
=> 2n-1 thuộc Ư(7)={1;7}
Với 2n-1=1=> n=1
Với 2n-1=7=> n=4
Vây..
k cho mk
\(\frac{4n+3}{2n+1}=\frac{2n+1+2n+2}{2n+1}=\frac{2n+1}{2n+1}+\frac{2n+2}{2n+1}=1+\frac{2n+1+1}{2n+1}=1+\frac{2n+1}{2n+1}+\frac{1}{2n+1}=1+1+\frac{1}{2n+1}\)
Để (4n + 3) chia hết cho (2n+1) thì \(\frac{1}{2n+1}\) phải là số nguyên
\(\Rightarrow2n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)
\(2n+1=1\Rightarrow n=0\)
\(2n+1=-1\Rightarrow n=-1\) (loại)
Vậy n = 0
4n+3 ⋮ 2n+1
=> [4n+3 - 2(2n+1)] ⋮ 2n+1
=> [(4n+3) - (4n+2)] ⋮ 2n+1
=> 1 ⋮ 2n+1
=> 2n+1 \(\in\) Ư(1) = {1}
=> n = {0}