Given that f(x)=x^4+ax^3+b is divisible by g(x)=x^2-1. Find a+b
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình sẽ giải bằng tiếng Việt cho dễ hiểu nhé :)
Đề bài : Cho \(f\left(x\right)=x^4+ax^3+b\) chia hết cho \(g\left(x\right)=x^2+1\) . Tính a + b
Theo đề , ta đặt \(f\left(x\right)=g\left(x\right).n\left(x\right)\) với \(n\left(x\right)=x^2+cx+d\)
Vậy thì : \(x^4+ax^3+b=\left(x^2+1\right).\left(x^2+cx+d\right)\)
\(\Leftrightarrow x^4+ax^3+b=x^4+cx^3+x^2\left(d+1\right)+cx+d\)
Sử dụng đồng nhất hệ thức, ta có a = c , d + 1 = 0 , c = 0 , b = d
Suy ra : a = 0 , b = -1
Vậy a + b = -1
x^4+ax+b chia hết cho x^2-4
=>x^4+ax+b chia hết cho x-2 và x+2
x^4+ax+b=(x-2)(x^3+2x^2+4x+a+8)+(b+2(a+8))
x^4+ax+b chia hết cho x-2=>b+2(a+8)=0
x^4+ax+b=(x+2)(x^3-2x^2+4x+a-8)+(b+2(8-a))
x^4+ax+b chia hết cho x+2=>b+2(8-a)=0
=>b+2(a+8)=b+2(8-a)
<=>2a+16=16-2a
<=>4a=0
<=>a=0=>b=-16
Tại a=0,b=-16 ,giá trị của a+b=0+(-16)=-16
x4 - mx2 + 9 = (x2 -1)2
vây m =6 thì x4 -6x2 +9 chia hết cho x2 - 1
( ngâniq106)
Exer 1:
Solution:
Suppose that, the unknown number is: \(\overline{x215}\) (where x \(\in\) N).
When we clean three digits then the smaller number is \(\overline{x}\).
We have: \(\overline{x215}\) + \(\overline{x}\) = 78293
\(\Rightarrow\) 1000. \(\overline{x}\) + 215 + \(\overline{x}\) = 78293
1001. \(\overline{x}\) = 78078
x = 78
Thus, we found two natural number: 78215 and 78.
Exer 2:
Solution:
We have: x + 2y \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
(2x + 4y) + (3x - 4y) = 5x \(⋮\) 5
\(\Rightarrow\) 2x + 4y \(⋮\) 5
Deduce 3x - 4y \(⋮\) 5.
Exer 3:
Solution:
We have: 2x + 5y \(⋮\) 7
4x + 10y \(⋮\) 7
(4x + 10y) - (4x + 3y) = 7y \(⋮\) 7
\(\Rightarrow\) 4x + 10y \(⋮\) 7
Deduce 4x + 3y \(⋮\) 7.
Dịch: Tìm giá trị của k nếu :\(x^3+kx^2+\left(4-k\right)x-35⋮\left(x-7\right)\)
=>x-7=0=>x=7 => Là nghiệm của phương trình .
Thế x=7 vào biểu thức , ta có :
\(7^3+k.7^2+\left(4-k\right).7-35\)
=\(343+49k+28-7k-35=>42k=-336=>k=-8\)
Vậy k=-8
\(x^2-1=\left(x+1\right)\left(x-1\right)\)
\(f\left(x\right)=x^4+ax^3+bf\left(x\right)=x^4+ax^3+b\)
Theo định lí Bezout, ta có :
\(f\left(1\right)=1+ax^3+b=0=>a+b=-1\)
\(f\left(-1\right)=1-a+b=0=>-a+b=-1\)
Giải hệ phương trình, ta có:
a+b=-1
-a+b=-1
=> a=0;b=-1
=>a+b=-1