K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 11 2016

dg bận nên mk ghi kq thôi từ kq bn suy ra hạng tử r` pt nhé

Min=-2 khi (x,y)=(1,-1)

1 tháng 3 2022

Tham khảo:

undefined

CHÚC EM HỌC TỐT NHÁ hehe

23 tháng 7 2021

     \(5x2+5y2+8xy-2x+2y+2=0\) 

(=) \((4x^2 + 8xy + 4y^2) + (x^2 - 2x +1) + (y^2 + 2y +1) = 0 \)

(=) \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

Ta có \(\begin{cases} 4(x+y)^2 ≥ 0 \\ (x-1)^2 ≥ 0 \\ (y+1)^2 ≥ 0 \end{cases} \)

=> \(4(x+y)^2 + (x-1)^2 + (y+1)^2 ≥ 0 \)

Vậy để \(4(x+y)^2 + (x-1)^2 + (y+1)^2 = 0 \)

(=) \(\begin{cases} 4(x+y)^2 = 0 \\ (x-1)^2 = 0 \\ (y+1)^2 = 0 \end{cases} \)

(=) \(\begin{cases} x = -y \\ x = 1 \\ y = -1 \end{cases} \)

(=) \(\begin{cases} x = 1 \\ y = -1 \end{cases} \)

Vậy \(M=(x+y)^{2015}+(x-2)^{2016}+(y+1)^{2017} M=(1-1)^{2015} + (1-2)^{2016} + (-1+1)^{2017} M=0^{2015} + (-1)^{2016} +0^{2017} M= 1 \)Vậy M = 1

 

Sửa đề: \(5x^2+5y^2+8xy-2x+2y+2=0\)

=>\(4x^2+8xy+4y^2+x^2-2x+1+y^2+2y+1=0\)

=>\(\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

=>\(\left\{{}\begin{matrix}2x+2y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(M=\left(x-y\right)^{2023}-\left(x-2\right)^{2024}+\left(y+1\right)^{2023}\)

\(=\left(1+1\right)^{2023}-\left(1-2\right)^{2024}+\left(-1+1\right)^{2023}\)

\(=2^{2023}-1\)

12 tháng 9 2017

\(E=5x^2+8xy+5y^2-2x+2y\)

\(=\left(4x^2+8xy+4y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x^2+2xy+y^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)-2\)

\(=4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2-2\ge-2\) có GTNN là - 2

Dấu "=" xảy ra \(\Leftrightarrow x=1;y=-1\)

Vậy \(E_{min}=-2\) tại \(x=1;y=-1\)

7 tháng 11 2021

mik tưởng 2x2 chứ

7 tháng 11 2021

ko có 2x2 đâu mik thấy đề bài nó ghi như thế. bn giúp mik nhé!

22 tháng 7 2021

A = x^2 + 5y^2 + 4xy - 2y - 3 

= x^2 + 4xy + 4y^2 + y^2 - 2y + 1 - 4

= ( x + 2y )^2 + ( y - 1 )^2 - 4 >= -4 

Dấu ''='' xảy ra khi y = 1 ; x = -2 

Vậy GTNN A là -4 khi x = -2 ; y = 1

28 tháng 3 2019

a. giá trị nhỏ nhất của B=3 khi và chỉ khi x=y=1006

16 tháng 11 2021

=4x2+4xy+y2+x2-6x-2y+1

=(2x+y)2-4x-2y+1+x2-2x+1-1

=[(2x+y)2-2(2x+y)+1]+(x-1)2-1

=(2x+y+1)2+(x-1)2-1

ta có: (2x+y+1)2\(\ge0\)với\(\forall\)x

         (x-1)2\(\ge0\)với \(\forall\)x

\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2\ge0\forall x\)

\(\Rightarrow\left(2x+y+1\right)^2+\left(x+1\right)^2-1\ge-1\forall x\)

\(\Rightarrow N\ge-1\)

Dấu '=' xảy ra\(\Leftrightarrow\hept{\begin{cases}\left(2x+y+1\right)^2=0\\\left(x-1\right)^2=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\y=-3\end{cases}}}\)

vậy N đạt GTNN là -1 khi và chỉ khi x=1;y=-3

5 tháng 9 2021

\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)

\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)

\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)

\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11

 

 

e: Ta có: \(x^2-6x+y^2+4y+2=0\)

\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)

\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)

Dấu '=' xảy ra khi x=3 và y=-2