K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

a) Ta có:

IE\(\perp\)AC  (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)

\(\Rightarrow\)IE // MQ

Lại có:

MI \(\perp\)BE (GT)

EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)

\(\Rightarrow\)MI // EQ

mà IE // MQ (CMT)

Vậy tứ giác MIEQ có các cạnh đối song song.

b) Vì: MI // EQ (CMT)

\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)

Xét tg BKM vg tại K và tg MIB vg tại I

BM chung

\(\widehat{ABC}=\widehat{IMB}\)(CMT)

Vậy: TG BKM=TG MIB (CH-GN)

c) Vì: TG BKM=TG MIB (CMT)

\(\Rightarrow\)MK=BI ( CTỨ)

Xét tg IEM vg tại I và tg QME vg tại Q:

EM chung

\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)

Vậy TG IEM= TG QME (CH-GN)

\(\Rightarrow\)MQ=IE (CTỨ)

Ta có: BE= BI + IE (B,I,E thẳng hàng)

\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)

\(\Rightarrow\)BE=MK+MQ

29 tháng 2 2020

a, tam giác ABC cân tại A (gt)

=> góc ABC = góc ACB (đl)

góc ACB = góc ECN (đối đỉnh)

=> góc ABC  = góc ECN 

xét tam giác BDM và tam giác ECN có : BD = CE (gt)

góc MDB = góc CEN = 90

=> tam giác BDM = tam giác ECN (cgv-gnk)

=> DM = EN (đn)

b, MD _|_ BC (gt)

NE _|_ BC (gT)

=> MD // EN (Đl)

=> góc DMI = góc INE (slt)

xét tam giác DMI và tam giác ENI có : góc MDI = góc NEI  = 90

MD = EN (Câu a)

=>  tam giác DMI = tam giác ENI (cgv-gnk)

=> DI = IE (đn) mà I nằm giữa D và E 

=> I là trđ của DE (đn)

c, xét tam giác ABO và tam giác ACO có : AO chung

AB = AC do tam giác ABC cân tại A (gT)

góc ABO = góc ACO = 90

=> tam giác ABO = tam giác ACO (ch-cgv)

=> BO = CO (đn) 

=> O thuộc đường trung trực của BC (đl)

AB = AC (cmt) => A thuộc đường trung trực của BC (Đl)

=> AO là trung trực của BC

29 tháng 2 2020

Hình tự vẽ nha.

a, Xét \(\Delta MBD\)và \(\Delta NEC\)có:

\(CE=BD\left(gt\right)\)

\(\widehat{NEC}=\widehat{MDB}=90^0\)

\(\widehat{MBD}=\widehat{NCE}\left(=\widehat{ACD}\right)\)

\(\Rightarrow\Delta MBD=\Delta NEC\left(cgv-gnk\right)\)

\(\Rightarrow MD=EN\left(2c.t.ứ\right)\)

b, Xét \(\Delta MID\)và \(\Delta NIE\) có:

\(\widehat{MDI}=\widehat{NEI}=90^0\)

\(EN=MD\left(cmt\right)\)

\(\widehat{MID}=\widehat{NIE}\left(đ.đ\right)\)

\(\Rightarrow\Delta MID=\Delta NIE\left(cgv-gn\right)\)

\(\Rightarrow ID=IE\left(2.c.t.ứ\right)\)

\(\Rightarrow I\) là giao điểm của \(DE\)

c, Xét \(\Delta ABO\) và \(\Delta ACO\) có:

\(AB=AC\)

\(\widehat{ABO}=\widehat{ACO}=90^0\)

\(AO\) là cạnh chung

\(\Rightarrow\text{​​}\)\(\Delta ABO=\Delta ACO\left(ch-cgv\right)\)

\(\Rightarrow\widehat{BAO}=\widehat{CAO}\left(2g.t.ứ\right)\)

\(\Rightarrow AO\)là đường phân giác trong \(\Delta ABC\) cân tại \(A\)

\(\Rightarrow AO\) là đường trung trực của \(BC\)

12 tháng 4 2021

a) Ta có: \(AH\) là phân giác \(\widehat{EAF},AH\perp EF\rightarrow\Delta AEF\)cân tại \(A\)

b) Kẻ \(BG//AC,G\in EF\rightarrow\widehat{BGK}=\widehat{GKF}\)

Ta có: \(BK//EF\rightarrow\widehat{BKG}=\widehat{KGF}\)

Mà \(\Delta BKG,\Delta FGK\)chung cạnh \(KG\)

\(\rightarrow\Delta BKG=\Delta FGK\left(g.c.g\right)\)

\(\rightarrow BG=KF\)

Ta có: \(BG//AC\rightarrow\widehat{GBM}=\widehat{MCF}\)

Mà \(BM=MC\)vì \(M\)là trung điểm \(BC,\widehat{BMG}=\widehat{FMC}\)

\(\rightarrow\Delta BMG=\Delta CMF\left(c.g.c\right)\)

\(\rightarrow BG=CF\)

\(\rightarrow KF=CF\left(=BG\right)\)

c) Ta có: \(BG//AC\)

\(\rightarrow\widehat{BGE}=\widehat{AFE}=\widehat{AEF}=\widehat{BEG}\)

\(\rightarrow\Delta BGE\)cân tại \(B\rightarrow BE=BG\)

\(\rightarrow BE=CF\)

Mà \(AE=À,AE=AB+BE,AF=AC-C\)

\(\rightarrow AE+AF=AB+BE+AC-CF\)

\(\rightarrow2AE=AB+AC\)vì \(BE=CF\)

\(\rightarrow AE=\frac{AB+AC}{2}\)

12 tháng 4 2021

help me mọi người ơi ai xong đầu tiên mk k cho