K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 8 2021

a) Ta có:

IE\(\perp\)AC  (I\(\in\)BE mà BE \(\perp\)AC)
MQ\(\perp\)AC (GT)

\(\Rightarrow\)IE // MQ

Lại có:

MI \(\perp\)BE (GT)

EQ\(\perp\) BE (E;Q\(\in\)AC ; BE\(\perp\)AC)

\(\Rightarrow\)MI // EQ

mà IE // MQ (CMT)

Vậy tứ giác MIEQ có các cạnh đối song song.

b) Vì: MI // EQ (CMT)

\(\Rightarrow\)\(\widehat{ACB}\)=\(\widehat{IMB}\) (Đồng vị)

mà \(\widehat{ABC}=\widehat{ACB}\) (TG ABC cân tại A)

\(\Rightarrow\)\(\widehat{ABC}=\widehat{IMB}\)

Xét tg BKM vg tại K và tg MIB vg tại I

BM chung

\(\widehat{ABC}=\widehat{IMB}\)(CMT)

Vậy: TG BKM=TG MIB (CH-GN)

c) Vì: TG BKM=TG MIB (CMT)

\(\Rightarrow\)MK=BI ( CTỨ)

Xét tg IEM vg tại I và tg QME vg tại Q:

EM chung

\(\widehat{IEM}=\widehat{EMQ}\)(Soletrong do IE // MQ)

Vậy TG IEM= TG QME (CH-GN)

\(\Rightarrow\)MQ=IE (CTỨ)

Ta có: BE= BI + IE (B,I,E thẳng hàng)

\(\hept{\begin{cases}BI=MI\left(CMT\right)\\IE=MQ\left(CMT\right)\end{cases}}\)

\(\Rightarrow\)BE=MK+MQ

12 tháng 2 2018

A B C M 4cm H K

a)Ta có: tam giác ABC là tam giác cân

\(=>AB=AC\)

Mà \(AB=4cm\)

=>>AC=4cm

b) Nếu góc B=60 độ =>tgiác ABC là tam giác đèu(t/c)

c) Xét tam giác ABM và tgiác ACM có

AB=AC(cmt)

AM: chung

==>>tgiác ABM=tgiác ACM( ch-cgv)

d) Ta có: tam giác ABM=tgiác ACM(cmt)

=>\(\widehat{AMC}=\widehat{AMB}\)(2 góc tương ứng)

Mà: \(\widehat{AMC+}\widehat{AMC}=180^0\)

\(=>\widehat{AMC=}\widehat{AMB}=\frac{180^0}{2}=90^0\)

=> AMvuông góc vs BC

e) Xét tgiác BMH và tgiác CMK có :

BM=CM( 2 cạnh  tương ứng , cmt(a))

\(\widehat{B}=\widehat{C}\)( tgiác ABC là tgiác đều)

==>>>tgiác BMH=tgiác CMK(ch-gn)

=>MH=MK( 2 cạnh tương ứng)


 

a: Xét ΔABM vuông tại M và ΔACM vuông tại M có

AB=AC

AM chung

=>ΔABM=ΔACM

b: Xét ΔAIM vuông tạiI và ΔAKM vuông tại K có

AM chung

góc IAM=góc KAM

=>ΔAIM=ΔAKM

=>AI=AI và MI=MK

c:AI=AK

MI=MK

=>AM là trung trực của IK=>AM vuông góc IK

a: Xét ΔABC có DE//BC

nên AD/AB=AE/AC
mà AB=AC
nên AD=AE
hay ΔADE cân tại A

b: Xét ΔMBD vuông tại M và ΔNCE vuông tại N có 

BD=CE

\(\widehat{BDM}=\widehat{CEN}\)

Do đó: ΔMBD=ΔNCE

c: Xét ΔDBC và ΔECB có 

DB=EC

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

Suy ra: \(\widehat{ICB}=\widehat{IBC}\)

hay ΔIBC cân tại I

d: Ta có: IB=IC

nên I nằm trên đường trung trực của BC(1)

Ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AI là đường trung trực của BC

Ta có: ΔABC cân tại A

mà AI là đường trung trực

nên AI là tia phân giác của góc BAC

15 tháng 2 2022

bạn vẽ hình giúp mình đcko

 

Xét ΔABE vuông tại E và ΔACF vuông tại F có

AB=AC

\(\widehat{A}\) chung

Do đó:ΔABE=ΔACF

Suy ra: BE=CF