K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 11 2016

Ta có :

A = 2x2 - 10x + 11

= 2( x2 - 2.x.\(\frac{5}{2}\) + \(\frac{25}{4}\) ) - \(\frac{3}{2}\)

= 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\)

Ta có :

(x - \(\frac{5}{2}\))2 \(\ge0\)

<=> 2(x - \(\frac{5}{2}\))2 \(\ge0\)

<=> 2(x - \(\frac{5}{2}\))2 - \(\frac{3}{2}\) \(\ge-\frac{3}{2}\)

Vậy Amin = - \(\frac{3}{2}\) [ Khi (x - \(\frac{5}{2}=0=>x=\frac{5}{2}\))

 
19 tháng 9 2017

Tìm GTLN nhé ! 

Ta có : A = 11 - 10x - x2 

= -(x2 + 10x - 11) 

= -(x2 + 10x + 25 - 14) 

A = -(x + 5)2 + 14 

Vì \(-\left(x+5\right)^2\le0\forall x\in R\)

Nên : A = -(x + 5)2 + 14 \(\le14\forall x\in R\)

Vậy Amin = 14 khi x = -5 . 

15 tháng 12 2016

gtnn xảy ra khi 2 giá trị tuyệt đối là 0

Mà Ix+3I+I11-xI=0+0

X sẽ bằng -3 hoặc x=11 nha bạn

25 tháng 4 2019

Ta có: \(A=4x^2+12x+9-1\)

   <=> \(A=\left(2x+3\right)^2-1\)

   <=> \(A=\left(2x+3-1\right)\left(2x+3+1\right)\)

   <=> \(A=\left(2x+2\right)\left(2x+4\right)\)

   <=> \(A=4\left(x+1\right)\left(x+2\right)\ge4.1.2=8\)

   Vậy Amin = 8 khi x=0 

25 tháng 4 2019

trần gia bảo bái phục bái phục!

                    Lời giải

Tự c/m: \(\left(a+b\right)^2=a^2+2ab+b^2\) (phân tích thành (a+b) . (a+b) rồi phá tung cái ngoặc ra)

Ta có: \(A=4\left(x^2+3x+2\right)\) (đặt thừa số chung)

\(=4\left[x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\left(\frac{3}{2}\right)^2+2\right]\)

\(=4\left[\left(x+\frac{3}{2}\right)^2-\frac{1}{4}\right]=4\left(x+\frac{3}{2}\right)^2-1\ge-1\) (do \(\left(x+\frac{3}{2}\right)^2\ge0\))

Dấu "=" xảy ra khi x + 3/2 = 0 tức là x = -3/2

Vậy Min (GTNN) A = -1 khi và chỉ khi x = -3/2

20 tháng 3 2017

Ta có: \(A=\left|x-2\right|+\left|x-10\right|=\left|x-2\right|+\left|10-x\right|\)

Áp dụng bất đẳng thức \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(A\ge\left|x-2+10-x\right|=\left|-8\right|=8\)

Dấu " = " khi \(\left\{{}\begin{matrix}x-2\ge0\\10-x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le10\end{matrix}\right.\Rightarrow2\le x\le10\)

Vậy \(MIN_A=8\) khi \(2\le x\le10\)