chứng minh rằng :
ước chung lớn nhất của 2 số chẵn liên tiếp khác không bằng hai
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
vì ước chung lớn nhất luôn là số nhỏ hơn hoặc bằng 1 trong 2 số đó
=> ước chung lớn nhất của tổng của chúng và bội chung nhỏ nhất của chúng
gia su ton 2 so thoa man dk tren
goi 2 so do la a.b
goi c uoc chung >9
ta co a= ck
b= cx
khi do k va x phai la 2 so tu nhien lien tiep
gia su x= k +1
khi do b= ck+c
ma c≥10≥10
suy ra b-a>10
.........................................trai voi gia thiet
gọi 2 số lẻ liên tiếp là 2K + 1 và 2K + 3
gọi d là ƯCLN( 2K+1;2K+3)
ta có ƯCLN(2k+1;2k+3)=d \(\Rightarrow\)2k+1 chia hết cho d 2k + 3 chia hết cho d
suy ra 2k+3 - 2k - 1 = 2 chia hết cho d
mà số lẻ ko chia hết cho 2
suy ra d = 1
vậy 2 số lẻ liên thiếp là 2 số nguyên tố cùng nhau
a) abab = a.1000 + b.100 + a.10 + b
= a.1010 + b.101 = ab.1111
vì 1111 chia hết cho 101 suy ra abab là bội của 101
b) aaabbb = a.100000 + a.10000 + a.1000 + b.100 + b.10 + b
= a.111000 + b.111
= ab.111111
vì 111111 chia hết cho 37 suy ra 37 là ước của aaabbb
bài còn lại mình làm cho bạn sau nha, k mình nhé
Gọi hai số chẵn liên tiếp là 2a;2a+2
Gọi d=UCLN(2a;2a+2)
\(\Leftrightarrow2a+2-2a⋮d\)
=>d=2
Vậy: UCLN(2a;2a+2)=2