K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 10 2016

Ta có:

\(\left(\sqrt{a}+\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)

\(=\left(\sqrt{a}\right)^2+\sqrt{a}.\sqrt{b}+\sqrt{b}.\sqrt{a}+\left(\sqrt{b}\right)^2\)

\(=a+b+2\sqrt{a}.\sqrt{b}\)

\(=\left(\sqrt{a+b}\right)^2+2\sqrt{a}.\sqrt{b}\)

\(\sqrt{a}\ge0,\sqrt{b}\ge0\) nên \(2\sqrt{a}.\sqrt{b}\ge0\) cho nên

\(\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a+b}\right)^2=2\sqrt{a}.\sqrt{b}\ge0\).

Tức là \(\left(\sqrt{a}+\sqrt{b}\right)^2\ge\left(\sqrt{a+b}\right)^2,\) suy ra \(\sqrt{a}+\sqrt{b}\ge\sqrt{a+b}\)

Đẳng thức \(\sqrt{a}+\sqrt{b}=\sqrt{a+b}\) xảy ra chỉ khi \(\sqrt{a}.\sqrt{b}=0\)

tức là khi \(\sqrt{a}=0\) hoặc \(\sqrt{b}=0\), hay là \(a=0\) hoặc \(b=0\).

28 tháng 10 2016

Bạn j ơi. Bạn giúp mk trả lời bài mk đăng mà chưa ai chả lời đk ko bạn. Mk cần gấp lắm bạn

21 tháng 9 2019

Èo, ko gõ cái quái gì cũng bị chờ duyệt-_- Thua olm.

21 tháng 9 2019

Bài làm của em đầu tiên phải giả sử: \(3\ge y\ge x\ge z\ge0\)

Xét dấu nó thì e chỉ cần xét từng cái là được

Cái thứ nhất:

\(\sqrt{x+y}+\sqrt{y+z}=\sqrt{y}+\sqrt{x+y+z}\)

\(\Leftrightarrow\sqrt{\left(x+y\right)\left(y+z\right)}=\sqrt{y\left(x+y+z\right)}\)

\(\Leftrightarrow xz=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\z=0\end{cases}}\)

Cái thứ 2:

\(\sqrt{y}+\sqrt{z+x}=\sqrt{x+y+z}\)

\(\Leftrightarrow2\sqrt{y\left(x+z\right)}=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\x+z=0\end{cases}}\)

Kết hợp cả 2 điều kiện thì suy ra được

\(x=z=0;y=3\)

27 tháng 5 2017

Áp dụng bất đẳng thức Cô-si cho hai số không âm, ta có :

\(\dfrac{a+b}{2}\ge\sqrt{ab}\) (1)

\(\dfrac{b+c}{2}\ge\sqrt{bc}\) (2)

\(\dfrac{c+a}{2}\ge\sqrt{ca}\) (3)

Cộng từng vế bất đẳng thức (1), (2), (3) ta được :

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Vậy bất đẳng thức đã được chứng minh

Mở rộng cho bốn số a, b, c, d không âm, ta có bất đẳng thức :

\(a+b+c+d\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{da}\)

Mở rộng cho năm số a, b, c, d, e không âm, ta có bất đẳng thức : \(a+b+c+d+e\ge\sqrt{ab}+\sqrt{bc}+\sqrt{cd}+\sqrt{de}+\sqrt{ea}\)

25 tháng 4 2017

áp dụng BĐT AM-GM với 2 số không âm

\(a+b\ge2\sqrt{ab}\)

\(b+c\ge2\sqrt{bc}\)

\(a+c\ge2\sqrt{ac}\)

cộng các vế của BĐT ta có

\(2\left(a+b+c\right)\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\)

chia cả hai vế của BĐT cho 2 ta có đpcm

5 tháng 5 2020

Bất đẳng thức cần chứng minh tương đương:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

Ta có: \(\frac{a^2}{b}+3b=\frac{a^2+b^2}{b}+2b\ge2\sqrt{2\left(a^2+b^2\right)}\)(Theo BĐT Cô - si)

Tương tự ta có: \(\frac{b^2}{c}+3c\ge2\sqrt{2\left(b^2+c^2\right)}\);\(\frac{c^2}{a}+3a\ge2\sqrt{2\left(c^2+a^2\right)}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+3\left(a+b+c\right)\ge\)\(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)

Cần chứng minh \(2\sqrt{2\left(a^2+b^2\right)}+2\sqrt{2\left(b^2+c^2\right)}+2\sqrt{2\left(c^2+a^2\right)}\)\(-3\left(a+b+c\right)\)

\(\ge\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\)

hay \(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(*)

Sử dụng BĐT quen thuộc: \(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(Đẳng thức xảy ra khi x = y)

Khi đó ta được: \(\sqrt{\frac{a^2+b^2}{2}}\ge\frac{a+b}{2}\);\(\sqrt{\frac{b^2+c^2}{2}}\ge\frac{b+c}{2}\);\(\sqrt{\frac{c^2+a^2}{2}}\ge\frac{c+a}{2}\)

Cộng theo vế của 3 BĐT trên, ta được:

\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}\ge a+b+c\)(đúng với (*))

Đẳng thức xảy ra khi a = b = c

17 tháng 4 2018

a2/b + b2/c + c2/a >= 1/can2 ( can(a2+b2) + ... )

Xét can( (a2+b2)/2 ) = can ( ( (a2/b + b)/2 )nhân(b) ) nhỏ hơn hoặc bằng (a2/b + b)/4 + b/2

Tương tự vậy ta có vế phải nhỏ hơn hoặc bằng 1/4 VT cộng với 3/4(a+b+c)

Mà VT chứng minh theo BCS lớn hơn hoặc bằng a+b+c 

Suy ra VT lớn hơn hoặc bằng VP

Dấu bằng tự tìm

4 tháng 12 2016

giải phương trình nghiệm nguyên :
\(\sqrt{x-2008}+\sqrt{y-2009}+\sqrt{z-2010}+3012=\frac{1}{2}\left(x+y+z\right)\)

8 tháng 7 2021

áp dụng bất đẳng thức cô si cho:

*a+b≥\(2\sqrt{ab}\)

*b+c≥\(2\sqrt{bc}\)

*c+a≥\(2\sqrt{ca}\)

➩2(a+b+c)≥2(\(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\))

➩ĐPCM

Ta có:

\(a+b+c\ge\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\Leftrightarrow2a+2b+2c\ge2\sqrt{ab}+2\sqrt{bc}+2\sqrt{ca}\Leftrightarrow\left(a-2\sqrt{ab}+b\right)+\left(b-2\sqrt{bc}+c\right)+\left(c-2\sqrt{ca}+a\right)\ge0\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2+\left(\sqrt[]{b}-\sqrt{c}\right)^2+\left(\sqrt{c}-\sqrt{a}\right)^2\ge0\)

(luôn đúng với mọi a,b,c không âm)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)