K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

16x2 - 9(x + 1)2 = 0

[4x - 3(x + 1)][4x + 3(x + 1)] = 0

(4x - 3x - 3)(4x + 3x + 3) = 0

(x - 3)(7x + 3) = 0

\(\left[\begin{array}{nghiempt}x-3=0\\7x+3=0\end{array}\right.\)

\(\left[\begin{array}{nghiempt}x=3\\x=-\frac{3}{7}\end{array}\right.\)

31 tháng 8 2021

a) <=> (4x - 4x + 5)(4x + 4x - 5) = 15 <=> 40x = 15 <=> x = 3/8

31 tháng 8 2021

Sorry, cái này mình nhầm

 

a: \(8x\left(x-2017\right)-2x+4034=0\)

\(\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\)

8 tháng 8 2023

`4-x=2(x-4)^2`

`<=>4-x=2(x^2-8x+16)`

`<=> 4-x=2x^2 - 16x+32`

`<=> 4-x-2x^2+16x-32=0`

`<=> -2x^2 +15x-28=0`

`<=> -(2x^2-15x+28)=0`

`<=>-(2x^2-7x-8x+28)=0`

`<=> - [x(2x-7) - 4(2x-7)]=0`

`<=> -(2x-7)(x-4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}-2x+7=0\\x-4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-2x=-7\\x=4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)

__

`(x^2 +1) (x-2)+2x=4`

`<=> x^3 -2x^2 +x-2+2x-4=0`

`<=> x^3 -2x^2 +3x-6=0`

`<=> (x^3+3x)-(2x^2+6)=0`

`<=> x(x^2 +3) -2(x^2+3)=0`

`<=>(x^2+3)(x-2)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x^2+3=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x=2\end{matrix}\right.\)

__

`x^4 -16x^2=0`

`<=> x^2 (x^2 -16)=0`

`<=>x^2(x-4)(x+4)=0`

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

8 tháng 8 2023

\(4-x=2\left(x-4\right)^2\)

\(\Leftrightarrow4-x=2\left(x^2-8x+16\right)\)

\(\Leftrightarrow4-x=2x^2-16x+32\)

\(\Leftrightarrow2x^2-15x+28=0\)

\(\Leftrightarrow2x^2-7x-8x+28=0\)

\(\Leftrightarrow x\left(2x-7\right)-4\left(2x-7\right)=0\)

\(\Leftrightarrow\left(2x-7\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x-7\\x=4\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=4\end{matrix}\right.\)

___________

\(\left(x^2+1\right)\left(x-2\right)+2x=4\)

\(\Leftrightarrow x^3-2x^2+x-2+2x=4\)

\(\Leftrightarrow x^3-2x^2+3x-2-4=0\)

\(\Leftrightarrow x^3-2x^2+3x-6=0\)

\(\Leftrightarrow x^2\left(x-2\right)+3\left(x-2\right)=0\)

\(\Leftrightarrow\left(x^2+3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=-3\left(\text{vô lý}\right)\\x=2\left(tm\right)\end{matrix}\right.\)

\(\Leftrightarrow x=2\)

________________

\(x^4-16x^2=0\)

\(\Leftrightarrow\left(x^2\right)^2-\left(4x\right)^2=0\)

\(\Leftrightarrow\left(x^2-4x\right)\left(x^2+4x\right)=0\)

\(\Leftrightarrow x\left(x-4\right)x\left(x+4\right)=0\)

\(\Leftrightarrow x^2\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2=0\\x-4=0\\x+4=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

21 tháng 6 2021

a) (2x + 1)(1 - 2x) + (1 - 2x)2 = 18

= ( 1 - 2x) \(\left[\left(2x+1+1-2x\right)\right]\) = 18

= 2(1 - 2x)  - 18 = 0

= 2 - 4x - 18 = 0

= -16 - 4x = 0

= -4x = 16

= x = \(\dfrac{16}{-4}=-4\)

b) 2(x + 1)2 -(x - 3)(x + 3) - (x - 4)2 = 0

= 2 (x2 + 2x + 1) - (x2 - 9) - (x2 - 8x + 16) = 0

= 2x2 + 4x + 2 - x2 + 9 - x2 + 8x - 16 = 0

= 12x - 5 = 0

= 12x = 5

= x = \(\dfrac{5}{12}\)

c) (x - 5)2 - x(x - 4) = 9

= x2 - 10x + 25 - x2 + 4x - 9 = 0

= -6x + 16 = 0

= -6x = -16

= x = \(\dfrac{-16}{-6}=\dfrac{8}{3}\)

d) (x - 5)2 + (x - 4)(1 - x)

= x2 - 10x + 25 + 5x - x2 - 4 = 0

= -5x + 21 = 0

= -5x = -21

= x = \(\dfrac{-21}{-5}=\dfrac{21}{5}\) 

 Chúc bạn học tốt

5 tháng 3 2023

1)

x^3 -16x=0`

`<=>x(x^2 -16)=0`

\(< =>\left[{}\begin{matrix}x=0\\x^2-16=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=16\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b)

`x^4 -2x^3=0`

`<=>x^3 (x-2)=0`

\(< =>\left[{}\begin{matrix}x^3=0\\x-2=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

3)

`(2x-11)(x^2 -1)=0`

\(< =>\left[{}\begin{matrix}2x-11=0\\x^2-1=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}2x=11\\x^2=1\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=\dfrac{11}{2}\\x=1\\x=-1\end{matrix}\right.\)

4)

`x^3 -36x=0`

`<=>x(x^2 -36)=0`

\(< =>\left[{}\begin{matrix}x=0\\x^2-36=0\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x^2=36\end{matrix}\right.\\ < =>\left[{}\begin{matrix}x=0\\x=6\\x=-6\end{matrix}\right.\)

5)

`2x+19=0`

`<=>2x=-19`

`<=>x=-19/2`

5 tháng 3 2023

bài về nghiệm của đa thức

 

Bài 2: 

a: \(x^2\left(x^2-16\right)=0\)

\(\Leftrightarrow x\left(x-4\right)\left(x+4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\\x=-4\end{matrix}\right.\)

b: \(x^8+36x^4=0\)

\(\Leftrightarrow x^4=0\)

hay x=0

2 tháng 10 2021

a(b+3)-b(3+b)

=(3+b)(a-b)

Thay số, có: (3+1997).(2003-1997)

= 2000.6 =12000

xy(x+y)-2x-2y

xy(x+y)- 2(x+y)

(x+y).(xy-2)

Thay số, co: 7. (8-2)

7.4=28

18 tháng 7 2023

a)\(\left(x-2\right)^2-\left(2x+3\right)^2=0\Rightarrow\left(x-2+2x+3\right)\left(x-2-2x-3\right)=0\)

\(\Rightarrow\left(3x+1\right)\left(-x-5\right)=0\Rightarrow\left[{}\begin{matrix}3x+1=0\\-x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{3}\\x=-5\end{matrix}\right.\)

b)\(9\left(2x+1\right)^2-4\left(x+1\right)^2=0\Rightarrow\left[3\left(2x+1\right)+2\left(x+1\right)\right]\left[3\left(2x+1\right)-2\left(x+1\right)\right]=0\)

\(\Rightarrow\left[8x+5\right]\left[4x+1\right]=0\Rightarrow\left[{}\begin{matrix}8x+5=0\\4x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{8}\\x=\dfrac{1}{4}\end{matrix}\right.\)

c)\(x^3-6x^2+9x=0\Rightarrow x\left(x^2-6x+9\right)=0\Rightarrow x\left(x-3\right)^2=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x-3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=3\end{matrix}\right.\)

d) \(x^2\left(x+1\right)-x\left(x+1\right)+x\left(x-1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x^2-1\right)+x\left(x-1\right)=0\)

\(\Rightarrow x\left(x+1\right)\left(x-1\right)\left(x+1\right)+x\left(x-1\right)=0\)

\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)\left(x+1\right)+1\right]=0\)

\(\Rightarrow x\left(x-1\right)\left[\left(x+1\right)^2+1\right]=0\)

Do \(\left(x+1\right)^2+1>0\)

\(\Rightarrow x\left(x-1\right)=0\Rightarrow\left[{}\begin{matrix}x=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

18 tháng 7 2023

a, (\(x-2\))2 - (2\(x\) + 3)2 = 0

     (\(x\) - 2 - 2\(x\) - 3)(\(x\) - 2 + 2\(x\) + 3) = 0

     (-\(x\) - 5)(3\(x\) +1) = 0

      \(\left[{}\begin{matrix}-x-5=0\\3x+1=0\end{matrix}\right.\)

       \(\left[{}\begin{matrix}x=-5\\3x=-1\end{matrix}\right.\)

        \(\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{3}\end{matrix}\right.\)

Vậy \(x\in\) { -5;- \(\dfrac{1}{3}\)}

b, 9.(2\(x\) + 1)2 - 4.(\(x\) + 1)2 = 0 

    {3.(2\(x\) + 1) - 2.(\(x\) +1)}{ 3.(2\(x\) +1) + 2.(\(x\) +1)} = 0

    (6\(x\) + 3 - 2\(x\) - 2)(6\(x\) + 3 + 2\(x\) + 2) = 0

      (4\(x\) + 1)(8\(x\) + 5) =0

        \(\left[{}\begin{matrix}4x+1=0\\8x+5=0\end{matrix}\right.\)

          \(\left[{}\begin{matrix}x=-\dfrac{1}{4}\\x=-\dfrac{5}{8}\end{matrix}\right.\)

          S = { - \(\dfrac{5}{8}\)\(\dfrac{-1}{4}\)}

 

           

    

      

18 tháng 7 2023

d, \(x^2\)(\(x\) + 1) - \(x\) (\(x+1\)) + \(x\)(\(x\) -1) = 0

      \(x\left(x+1\right)\).(\(x\) - 1) + \(x\)(\(x\) -1) = 0

        \(x\)(\(x\) -1)(\(x\) + 1 + 1) = 0

            \(x\left(x-1\right)\left(x+2\right)\) = 0

             \(\left[{}\begin{matrix}x=0\\x-1=0\\x+2=0\end{matrix}\right.\)

               \(\left[{}\begin{matrix}x=0\\x=1\\x=-2\end{matrix}\right.\)

              S = { -2; 0; 1}

     

11 tháng 9 2019

a) x = 1; x = - 1 3                 b) x = 2.

c) x = 3; x = -2.                 d) x = -3; x = 0; x = 2.

2 tháng 7 2018

(x+2)(x+3)-(x-2)(x+5)=0

=> x2+5x+6-x2-3x+10=0

=>2x+16=0 

 =>2x=-16

=>x=-8