Tìm giá trị nhỏ nhất của bthuc sau:
B= 2x^2 + 10x - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=2x^2+10x-1\)
=> \(B=2\left(x^2+5x\right)-1\)
=> \(B=2\left(x^2+2.x\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)
=> \(B=2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
Có \(2\left(x+\frac{5}{2}\right)^2\ge0\)với mọi x
=> \(2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)
Dấu "=" xảy ra <=> \(\left(x+\frac{5}{2}\right)^2=0\)<=> \(x+\frac{5}{2}=0\)<=> \(x=\frac{-5}{2}\)
KL: Bmin = \(\frac{-27}{2}\)<=> \(x=\frac{-5}{2}\)
\(C=5x-x^2\)
=> \(C=-\left(x^2-5x\right)\)
=> \(C=-\left(x^2-2.x.\frac{5}{2}+\frac{25}{4}\right)+\frac{25}{4}\)
=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\)
Có \(\left(x-\frac{5}{2}\right)^2\ge0\)với mọi x
=> \(-\left(x-\frac{5}{2}\right)^2\le0\)
=> \(C=-\left(x-\frac{5}{2}\right)^2+\frac{25}{4}\le\frac{25}{4}\)
Dấu "=" xảy ra <=> \(\left(x-\frac{5}{2}\right)^2=0\)<=> \(x-\frac{5}{2}=0\)<=> \(x=\frac{5}{2}\)
KL: Cmax = \(\frac{25}{4}\)<=> \(x=\frac{5}{2}\)
B=2x2+10x-1=2(x2+5x-1/2)=2(x2+2*5/2*x+25/4-27/4)=2[x2+2*5/2*x+(5/2)2]-27/2=2(x+5/2)2-27/2
Ta có: (x+5/2)^2>=0(với mọi x)
=> 2(x+5/2)^2>=0(với mọi x)
=> 2(x+5/2)^2-27/2>=-27/2(với mọi x)
hay B>=-27/2( với mọi x)
Do đó, GTNN của B là -27/2 khi:
x+5/2=0
x=-5/2
Vậy GTNN của B là -27/2 khi x=-5/2
C=5x-x^2=-x^2+5x=-x^2+2*5/2*x-25/4+25/4=-[x^2-2*5/2*x+(5/2)^2]+25/4=-(x-5/2)^2+25/4
Ta có: (x-5/2)^2>=0(với mọi x)
=>-(x-5/2)^2<=0(với mọi x)
=> -(x-5/2)^2+25/4<=25/4(với mọi x) hay C<=25/4(với mọi x)
Do đó, GTLN của C là 25/4 khi: x-5/2=0
x=5/2
Vậy GTLN của C là 25/4 tại x=5/2
P = (x^2 + 2x) - 2024
= (x^2 + 2x + 1) - 1 - 2024
= (x + 1)^2 - 2025
Với mọi giá trị của x, (x + 1)^2 luôn lớn hơn hoặc bằng 0. Do đó, giá trị nhỏ nhất của P là khi (x + 1)^2 đạt giá trị nhỏ nhất, tức là bằng 0.
Khi (x + 1)^2 = 0, ta có x + 1 = 0, từ đó suy ra x = -1.
Vậy, giá trị nhỏ nhất của biểu thức P là P = (-1 + 1)^2 - 2025 = -2025.
ta có: A = 2x2 + 10x + 1
A = 2.(x2 + 5x + 1/2)
A = 2.(x2 + 2x.5/2 + 25/4 -23/4)
A = 2.[ (x+5/2)2 -23.4 ]
A = 2.(x+5/2)2 - 23/2
Để A nhỏ nhất
\(\Rightarrow2.\left(x+\frac{5}{2}\right)^2\) nhỏ nhất
mà \(2.\left(x+\frac{5}{2}\right)^2\ge0\)
Dấu "=" xảy ra khi:
2.(x+5/2) = 0
x+5/2 = 0
x = -5/2
=> giá trị nhỏ nhất của A = 2.(-5/2)2 + 10.(-5/2) + 1 = -23/2
B=2x2+10x-1
=2(x2+5x-\(\frac{1}{2}\))
=2(x2+2x.\(\frac{5}{2}\)\(+\frac{25}{4}\)\(-\frac{27}{4}\))
=2[(x2+\(\frac{5}{2}\))2-\(\frac{27}{4}\)]
=2(x+\(\frac{5}{2}\))2-\(\frac{27}{2}\)\(\ge\frac{-27}{2}\)(vì (x+5/2)2\(\ge0\))
Dấu = xảy ra khi :
x+\(\frac{5}{2}\)=0
<=>x=\(\frac{-5}{2}\)
Vậy GTNN của B là \(\frac{-27}{2}\)khi x= \(\frac{-5}{2}\)
\(a,\\ A=25x^2-10x+11\\ =\left(5x\right)^2-2.5x.1+1^2+10\\ =\left(5x+1\right)^2+10\ge10\forall x\in R\\ Vậy:min_A=10.khi.5x+1=0\Leftrightarrow x=-\dfrac{1}{5}\\ B=\left(x-3\right)^2+\left(11-x\right)^2\\ =\left(x^2-6x+9\right)+\left(121-22x+x^2\right)\\ =x^2+x^2-6x-22x+9+121=2x^2-28x+130\\ =2\left(x^2-14x+49\right)+32\\ =2\left(x-7\right)^2+32\\ Vì:2\left(x-7\right)^2\ge0\forall x\in R\\ Nên:2\left(x-7\right)^2+32\ge32\forall x\in R\\ Vậy:min_B=32.khi.\left(x-7\right)=0\Leftrightarrow x=7\\Tương.tự.cho.biểu.thức.C\)
b:
\(D=-25x^2+10x-1-10\)
\(=-\left(25x^2-10x+1\right)-10\)
\(=-\left(5x-1\right)^2-10< =-10\)
Dấu = xảy ra khi x=1/5
\(E=-9x^2-6x-1+20\)
\(=-\left(9x^2+6x+1\right)+20\)
\(=-\left(3x+1\right)^2+20< =20\)
Dấu = xảy ra khi x=-1/3
\(F=-x^2+2x-1+1\)
\(=-\left(x^2-2x+1\right)+1=-\left(x-1\right)^2+1< =1\)
Dấu = xảy ra khi x=1
N = 2x² + 10x - 1
= 2(x² + 2.x.5/2 + 25/4) - 27/2
= 2(x + 5/2)² - 27/2 ≥ - 27/2
=> min N = - 27/2 khi x + 5/2 = 0 <=> x = - 5/2
chúc bn hok tốt
\(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5x\right)-1\)
\(\Rightarrow B=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)
\(\Rightarrow B=\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
Ta có : \(2\left(x+\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)
Dấu "=" xảy rak hi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{5}{2}=0\)
\(\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(Min_B=\frac{-27}{2}\Leftrightarrow x=\frac{-5}{2}\)