Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn
`A = (10x + 25)/(2x+4)`
`= (10x + 20)/(2x+4) + 5/(2x+4)`
`= 5 + 5/(2x+4)`
`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất
`<=> 2x+4` là số nguyên âm nhỏ nhất
`<=> 2x + 4 = -2`
`<=> 2x = -6`
`<=> x = -3`
Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`
3:
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)
Trả lời:
Ta có: \(\left(2x+1\right)^{10}\ge0\forall x\)
\(\Leftrightarrow\left(2x+1\right)^{10}+2\ge2\forall x\)
\(\Leftrightarrow\frac{4}{\left(2x+1\right)^{10}+2}\le\frac{4}{2}\forall x\)
\(\Leftrightarrow-\frac{4}{\left(2x+1\right)^{10}+2}\ge-2\forall x\)
Dấu "=" xảy ra khi 2x + 1 = 0 <=> 2x = -1 <=> x = -1/2
Vậy GTNN của A = - 2 khi x = - 1/2.
a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1
Vậy A nhỏ nhất=-1
=>lx-7l=0
=>x=7
b/Vì l2x+4l>0 nên -l2x+4l<0
nên -l2x+4l+3<3
=> B lớn nhất =3
=>x=-2
a, \(A=\left|x-7\right|\ge0\)
\(\Rightarrow\left|x-7\right|-1\ge-1\)
Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7
Vậy minA là -1 tại x = 7
b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)
\(\Rightarrow-\left|2x+4\right|+3\ge3\)
Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2
Vậy maxB là 3 tại x = -2
\(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5x\right)-1\)
\(\Rightarrow B=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)
\(\Rightarrow B=\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
Ta có : \(2\left(x+\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)
Dấu "=" xảy rak hi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{5}{2}=0\)
\(\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(Min_B=\frac{-27}{2}\Leftrightarrow x=\frac{-5}{2}\)