K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2016

\(B=2x^2+10x-1\)

\(\Rightarrow B=2\left(x^2+5x\right)-1\)

\(\Rightarrow B=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)

\(\Rightarrow B=\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)

Ta có : \(2\left(x+\frac{5}{2}\right)^2\ge0\)

\(\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)

Dấu "=" xảy rak hi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\)

\(\Leftrightarrow x+\frac{5}{2}=0\)

\(\Leftrightarrow x=-\frac{5}{2}\)

Vậy \(Min_B=\frac{-27}{2}\Leftrightarrow x=\frac{-5}{2}\)

19 tháng 7 2023

Ta có: \(\left(x-1\right)^2\ge0\forall x=>-\left(x-1\right)^2\le0\forall x=>B=8-\left(x-1\right)^2\le8\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x-1=0\Leftrightarrow x=1\)

Vậy MinB = 8 khi và chỉ khi x=1

1 tháng 3 2023

Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn

`A = (10x + 25)/(2x+4)`

`= (10x + 20)/(2x+4) + 5/(2x+4)`

`= 5 + 5/(2x+4)`

`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất

`<=> 2x+4` là số nguyên âm nhỏ nhất

`<=> 2x + 4 = -2`

`<=> 2x = -6`

`<=> x = -3`

Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`

3: 

Ta có: \(\left(2x+1\right)^2\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^2+2021\ge2021\forall x\)

Dấu '=' xảy ra khi \(x=-\dfrac{1}{2}\)

8 tháng 4 2017

mình ko biết nhưng các bạn k mình nha mình đang âm

8 tháng 4 2017

k mình nha

9 tháng 6 2021

Trả lời:

Ta có: \(\left(2x+1\right)^{10}\ge0\forall x\)

\(\Leftrightarrow\left(2x+1\right)^{10}+2\ge2\forall x\)

\(\Leftrightarrow\frac{4}{\left(2x+1\right)^{10}+2}\le\frac{4}{2}\forall x\)

\(\Leftrightarrow-\frac{4}{\left(2x+1\right)^{10}+2}\ge-2\forall x\)

Dấu "=" xảy ra khi 2x + 1 = 0 <=> 2x = -1 <=> x = -1/2

Vậy  GTNN của A = - 2 khi x = - 1/2.

25 tháng 3 2020

lập bảng xét dấu đi

24 tháng 3 2020

a/ Vì lx-7l > hoặc =0 nên lx-7l-1>hoặc=-1

Vậy A nhỏ nhất=-1

=>lx-7l=0

=>x=7

b/Vì l2x+4l>0 nên -l2x+4l<0

nên -l2x+4l+3<3 

=> B lớn nhất =3

=>x=-2

19 tháng 7 2020

a, \(A=\left|x-7\right|\ge0\)

\(\Rightarrow\left|x-7\right|-1\ge-1\)

Dấu ''='' xảy ra <=> x - 7 = 0 <=> x = 7

Vậy minA là -1 tại x = 7

b, \(B=\left|2x+4\right|\ge0\)Mà \(-\left|2x+4\right|< 0\)

\(\Rightarrow-\left|2x+4\right|+3\ge3\)

Dấu ''='' xảy ra <=> 2x + 4 = 0 <=> 2x = -4 <=> x = -2 

Vậy maxB là 3 tại x = -2