Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Do `x ∈ Z => 2x` là só chẵn `=> 2x + 4` là số chẵn
`A = (10x + 25)/(2x+4)`
`= (10x + 20)/(2x+4) + 5/(2x+4)`
`= 5 + 5/(2x+4)`
`A ` có giá trị nhỏ nhất khi `5/(2x+4)` có giá trị nhỏ nhất
`<=> 2x+4` là số nguyên âm nhỏ nhất
`<=> 2x + 4 = -2`
`<=> 2x = -6`
`<=> x = -3`
Vậy `A ` đạt giá trị nhỏ nhất `<=> x = -3`
Đặt A = \(\frac{3x+4}{2x+1}=\frac{2\left(3x+4\right)}{2\left(2x+1\right)}=\frac{6x+8}{2\left(2x+1\right)}=\frac{6x+3+5}{2\left(2x+1\right)}=\frac{3\left(2x+1\right)+5}{2\left(2x+1\right)}=\frac{3}{2}+\frac{5}{2\left(2x+1\right)}\)
*Xét 2x + 1 < 0 => \(\frac{5}{2\left(2x+1\right)}< 0\)=>\(A>\frac{3}{2}\)
*Xét 2x + 1 > 0
Mà 2x + 1 \(\in\)Z (vì x \(\in\)Z) => \(2x+1\ge1\).Ta có: \(\frac{5}{2\left(2x+1\right)}\le\frac{5}{2}\)
\(\Rightarrow A\ge\frac{3}{2}+\frac{5}{2}=\frac{8}{2}=4\)
\(\Leftrightarrow A=4\Leftrightarrow2x+1=1\Leftrightarrow2x=0\Leftrightarrow x=0\)
Vậy GTNN của A = 1 tại x = 0
để phân số đã cho nhỏ nhất khi 2x+1 là số nguyên âm lớn nhất
=> 2x+1 =-1
2x= -2
x=-1
\(B=2x^2+10x-1\)
\(\Rightarrow B=2\left(x^2+5x\right)-1\)
\(\Rightarrow B=2\left(x^2+2.x.\frac{5}{2}+\frac{25}{4}\right)-\frac{27}{2}\)
\(\Rightarrow B=\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\)
Ta có : \(2\left(x+\frac{5}{2}\right)^2\ge0\)
\(\Rightarrow2\left(x+\frac{5}{2}\right)^2-\frac{27}{2}\ge\frac{-27}{2}\)
Dấu "=" xảy rak hi và chỉ khi \(\left(x+\frac{5}{2}\right)^2=0\)
\(\Leftrightarrow x+\frac{5}{2}=0\)
\(\Leftrightarrow x=-\frac{5}{2}\)
Vậy \(Min_B=\frac{-27}{2}\Leftrightarrow x=\frac{-5}{2}\)
a)
\(A=\dfrac{2x+3}{x-2}=\dfrac{2\left(x-2\right)+7}{x-2}=2+\dfrac{7}{x-2}\)
Vì x nguyên nên để A có giá trị nguyên thì \(\dfrac{7}{x-2}\) có giá trị nguyên
Khi đó x - 2 ∈ Ư(7) = {-7; -1; 1; 7}
x-2 | -7 | -1 | 1 | 7 |
x | -5 | 1 | 2 | 9 |
Vậy x ∈ {-5; 1; 2; 9}.
a) Ta có:\(|2x-4|\ge0\forall x\)
\(\Rightarrow|2x-4|+13\ge13\forall x\)
hay A\(\ge13\forall x\)
Dấu "=" \(\Leftrightarrow|2x-4|=0\)
<=> 2x-4=0
<=> 2x=4
<=>x=2
Vậy Min A=13 đạt được khi x=2
b) Làm tương tự câu a)
c) \(C=\left(x-5\right)^2+25\)
Ta có: \(\left(x-5\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-5\right)^2+25\ge25\forall x\)
hay C \(\ge25\)
Dấu "=" <=> (x-5)2 =0
<=> x-5=0
<=> x=5
Vậy Min C=25 đạt được khi x=5
d) Làm tương tự c)
a) Vì \(\left|2x-4\right|\ge0\)
\(\Rightarrow\left|2x-4\right|+13\ge13\)
\(\Rightarrow A_{min} =13\)
b) Vì \(\hept{\begin{cases}\left|x+5\right|\ge0\\\left|2y-16\right|\ge0\end{cases}}\)
\(\Rightarrow\left|x+5\right|+\left|2y-16\right|+2015\ge0\)
\(\Rightarrow B_{min}=2015\)
Các phần sau làm tương tự như thế ^_^
Chúc bạn học tốt
Ta có : \(\frac{5n+7}{n-3}=\frac{5}{3}\)
\(\Leftrightarrow\left(5n+7\right)3=5\left(n-3\right)\)
\(\Leftrightarrow15n+21=5n-15\)
\(\Leftrightarrow15n-5x=-15-21\)
\(\Leftrightarrow10n=-36\)
\(\Leftrightarrow n=-\frac{18}{5}\)
\(b,A\inℕ\Rightarrow5n+7⋮n-3\)
\(\Rightarrow5n-15+22⋮n-3\)
\(\Rightarrow5(n-3)+22⋮n-3\)
\(\Rightarrow22⋮n-3\)
\(\Rightarrow n-3\inƯ(22)=[\pm1,\pm2,\pm11,\pm22]\)
bạn tự vẽ bảng