Cho ngũ giác ABCDE có các cạnh bằng nhau và các góc thoả mãn: \(gócA\ge gócB\ge gócC\ge gócD\ge gócE\). CMR: ABCDE là ngũ giác đều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
Theo đề ta có:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}\) và \(\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}=360^o\) (tổng các góc trong tứ giác)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{\widehat{A}}{2}=\dfrac{\widehat{B}}{4}=\dfrac{\widehat{C}}{6}=\dfrac{\widehat{D}}{8}=\dfrac{\widehat{A}+\widehat{B}+\widehat{C}+\widehat{D}}{2+4+6+8}=\dfrac{360^o}{20}=18\)
\(\Rightarrow\left\{{}\begin{matrix}\widehat{A}=18\cdot2=36^o\\\widehat{B}=18\cdot4=72^o\\\widehat{C}=18\cdot6=108^o\\\widehat{D}=18\cdot8=144^o\end{matrix}\right.\)
Bạn chứng minh tam giác ABC=tam giác ADE(ccc)
suy ra góc BAC=góc DAE và góc ACB=gócADE
ta có góc CDA+góc CDE=180 độ
suy ra gocsCDA+ góc ACb=180 độ suy ra BC//AD
suy ra góc CAD=góc BCD,suy ra góc BAC=góc CAD=góc CAD
ta có góc CAB=góc CAD=góc DAE
suy ra đpcm
* Với điểm đầu là A: Có 4 vectơ được lập ra từ các cạnh và đường chéo của ngũ giác là: A B → ; A C → ; A D → ; A E →
* Tương tự với các đỉnh còn lại.
* Do đó, số vectơ được lập ra từ các cạnh và đường chéo của ngũ giác là 4.5 = 20 vecto
Đáp án D