Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ thấy AB=BC=CD=DE
và \(ABC\ge CDE=>AC\ge CE\)
Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)
\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)
Cộng theo vế (1) và (2)
\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)
Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều
trên tia đối của tia BA lấy điểm B' sao cho góc BB'C=gócADC
tam giác AB'C có :BAC+AB'C+ACB'=180 độ
tam giác ACD có:DAC+D+ACD=180 độ
=>ACB'=ACD
xét tam giác AB'C và tam giác ADC có
B'AC=DAC
AC là cạnh chung
ACB'=ACD
do đó tam giác AB'C= tam giác ADC(g-c-g)
=>DC=B'C(2 cạnh tương ứng)(1)
ta có ABC+D=180 độ (gt)
ABC+B'BC=180 độ(kề bù)
=>góc D=B'BC
mà góc AB'C=D(tam giác AB'C=tam giác ADC)
=>góc B'BC=AB'C(= góc D)
=>tam giác BB'C cân tại C
=>BC=B'C(2)
từ (1) và (2) suy ra :
BC=DC( dpcm)
a) Theo giả thiết, ta có:
AD=AB=BC và Aˆ+Cˆ=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
⇒{AD=BC(gt)AB//DC
=> ABCD là hình thang cân
Vậy ...
a) Theo giả thiết, ta có:
AD=AB=BC và Aˆ+Cˆ=1800
Suy ra tứ giác ABCD là hình vuông
Mà DB là đường chéo của tứ giác ABCD
=> DB là tia phân giác của góc ADC
b) Vì ABCD là hình vuông
\(\Rightarrow\hept{\begin{cases}AD=BC\left(GT\right)\\AB//DC\end{cases}}\)
=> ABCD là hình thang cân
Vậy ...
Phần trên chưa làm xong bấm nhầm nút gửi nên làm lại
Ta co A:B:C;D = 2:3:4:5
\(\Rightarrow\)\(\dfrac{A}{2}\) = \(\dfrac{B}{3}\) = \(\dfrac{C}{4}\) = \(\dfrac{D}{5}\) = \(\dfrac{A+B+C+D}{2+3+4+5}\) = \(\dfrac{360}{14}\) = \(\dfrac{180}{7}\)
\(\Rightarrow\) A= \(\dfrac{180}{7}\). 2 \(\approx\) 51
B= \(\dfrac{180}{7}\). 3 \(\approx\) 77
C= \(\dfrac{180}{7}\). 4 \(\approx\) 103
D= \(\dfrac{180}{7}\). 5 \(\approx\) 129
Ta thay: A+D=180 ; B+C=180 \(\Rightarrow\) ABCD la hinh thang