K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 11 2017

 Bạn chứng minh tam giác ABC=tam giác ADE(ccc)
suy ra góc BAC=góc DAE và góc ACB=gócADE
ta có góc CDA+góc CDE=180 độ
suy ra gocsCDA+ góc ACb=180 độ suy ra BC//AD
suy ra góc CAD=góc BCD,suy ra góc BAC=góc CAD=góc CAD
ta có góc CAB=góc CAD=góc DAE
suy ra đpcm

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

a: ΔEAD cân tại E

=>góc EAD=góc EDA=(180-108)/2=36 độ

ΔBAC cân tại B

=>góc BAC=góc BCA=(180-108)/2=36 độ

=>góc DAC=108-36-36=36 độ

=>góc EAD=góc DAC=góc CAB

b: góc CAE=36+36=72 độ

=>góc CAE+góc AED=180 độ

=>AC//ED

=>ED//AF

góc ABD+góc BAE=180 độ

=>AE//BF

=>AE//DF

mà ED//AF

và AE=ED

nên AEDF là hình thoi

18 tháng 11 2016

Dễ thấy AB=BC=CD=DE

\(ABC\ge CDE=>AC\ge CE\)

Tam giác ACE có \(AC\ge CE=>AEC\ge CAE\left(1\right)\)

\(ABC\ge CDE=>\frac{180^0-B}{2}\le\frac{180^0-D}{2}=>BAC\le CED=>CED\ge BAC\left(2\right)\)

Cộng theo vế (1) và (2)

\(AEC+CED\ge CAE+BAC=>E\ge A,mà.E\le A=>E=A\)

Vậy \(A=B=C=D=E\),mà ngũ giác ABCDE có các cạnh = nhau nên là ngũ giác đều

cj kham khảo

a) Nối AC; AD

Ngũ giác ABCDE được chia thành 3 tam giác: ΔABC, ΔACD, ΔADE. Tổng các góc trong của mỗi tam giác bằng 1800

Tổng các góc trong của ngũ giác ABCDE là 1800. 3 = 5400

b) Vì ABCDE là ngũ giác đều nên

\(\widehat{A}=\widehat{B}=\widehat{C}=\widehat{D}=\widehat{E}=\frac{540^0}{5}=108^0\)

Mặt khác ΔABC cân tại B nên 

\(\widehat{BAC}+\widehat{BCA}=\frac{180^0-108^0}{2}=36^0\)

\(\Rightarrow\widehat{CAE}=\widehat{ACD}=108^0-36^0=72^0\)

\(\Rightarrow\widehat{EDC}+\widehat{ADC}=108^0+72^2=180^0\)

Suy ra ED // AC hay ED // CF.

Chứng minh tương tự ta có EF // CD

Mặt khác ED = DC (gt)

nên tứ giác CEFD là hình thoi.

3 tháng 9 2019

A B C D E 1 2 1 2 K

Giải:

Góc của ngũ giác đều là \(\frac{\left(5-2\right).180^0}{5}=108^0\)

Xét \(\Delta ABC\)cân tại B có \(\widehat{ABC}=108^0\Rightarrow\widehat{A_1}=\widehat{C_1}=\frac{180^0-108^0}{2}=36^0\)

Do đó: \(\widehat{A_2}=\widehat{C_2}=108^0-36^0=72^0\)

Ta có: \(\widehat{C_2}+\widehat{D}=72^0+108^0=180^0\)mà 2 góc này ở vị trí trong cùng phía nên AC // DE.

Chứng minh tương tự như trên, BE // CD. Do đó CKED là hình bình hành.

Mà CD=DE nên CKED là hình thoi.

Mình làm mệt quá, k mk nha!