K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 10 2016

a) Xét \(\Delta ADB\) và \(\Delta AEC\) có:

          \(\widehat{A}\) chung
          AB = AC (giả thuyết)

          \(\widehat{ABD}=\widehat{ACE}\) (giả thuyết)
Do đó  \(\Delta ADB\) = \(\Delta AEC\) (g.c.g)
=> BD = CE (2 cạnh tương ứng)
b) Câu này hình như đề sai thì phải.

              

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Ta có: ΔABD=ΔACE

nên BD=CE; AD=AE

Xét ΔBCD và ΔCBE có 

BC chung

CD=BE

BD=CE
DO đó: ΔBCD=ΔCBE

c: Xét ΔBHE vuông tại E và ΔCHD vuông tại D có 

BE=CD

\(\widehat{EBH}=\widehat{DCH}\)

Do đó: ΔBHE=ΔCHD

d: Ta có: ΔBHE=ΔCHD

nên HB=HC

Xét ΔABH và ΔACH có 

AB=AC

AH chung

BH=CH

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

Do đó: ΔABH=ΔACH

Suy ra: \(\widehat{BAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc BAC

12 tháng 2 2022

#\(N\)

*Sửa đề: `CD \bot AB` chứ không phải `AD, BE` cắt đoạn `CD` tại `O` chứ không phải đoạn `BD.`

`a,` Vì Tam giác `ABC` có `AB = AC ->`\(\widehat{B}=\widehat{C}\) 

Xét Tam giác `BDC` và Tam giác `CEB` có:

`BC` chung

\(\widehat{B}=\widehat{C}\) `(CMT)`

\(\widehat{BDC}=\widehat{CEB}=90^0\) 

`=>` Tam giác `BDC =` Tam giác `CEB (ch-gn)`

`-> BD = CE (2` cạnh tương ứng `)`

`b,` Xét Tam giác `ADC` và Tam giác `AEB` có:

`AB = AC (g``t)`

\(\widehat{A}\) chung

\(\widehat{AEB}=\widehat{ADC}=90^0\)

`=>` Tam giác `ADC =` Tam giác `AEB (ch-gn)`

`=>` \(\widehat{ABE}=\widehat{ACD}\) `( 2` góc tương ứng `)`

Xét Tam giác `OBD` và Tam giác `OCE` có:

\(\widehat{ODB}=\widehat{OEC}=90^0\)

`BD = CE (CMT)`

\(\widehat{DBO}=\widehat{ECO}\) `(CMT)`

`=>` Tam giác `OBD =` Tam giác `OCE (g-c-g)`

`c,` *Mình sẽ bổ sung sau nha bạn .-. câu này mình bị bí á .-.

23 tháng 2 2023

câu c bn chỉ cần cm \(\Delta ADE\) cân tại \(A\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\) (1)

và \(\Delta ABC\) cân tại \(A\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(2)

Từ (1) và (2) suy ra góc ADE=góc ABC

mà 2 góc này ở vị trí đồng vị 

=>đpcm 

18 tháng 12 2016

A B C E D O

a)Xét ΔADB và ΔAEC có:

\(\widehat{ADB}=\widehat{AEC}=90^o\)
AB=AC(gt)

\(\widehat{A}\) : góc chung

=> ΔADB=ΔAEC ( cạnh huyền - góc nhọn)

=> BD=CE

b) Vì ΔADB=ΔAEC(cmt)

=> \(\widehat{ABD}=\widehat{ACE};AD=AE\)

Có: AB=AE+BE

AC=AD+DC

Mà: AB=AC(gt); AE=AD(cmt)

=>BE=DC

Xét ΔOEB và ΔODC có:

\(\widehat{OEB}=\widehat{ODC}=90^o\)

BE=DC(cmt)

\(\widehat{EBO}=\widehat{DCO}\left(cmt\right)\)

=> ΔOEB=ΔODC(g.c.g)

c) Vì: ΔOEB=ΔODC (cmt)

=> OB=OC

Xét ΔAOB và ΔAOC có:

AB=AC(gt)

\(\widehat{ABO}=\widehat{ACO}\left(cmt\right)\)

OB=OC(cmt)

=> ΔAOB=ΔAOC(c.g.c)

=> \(\widehat{OAB}=\widehat{OAC}\)

=> AO là tia pg của \(\widehat{BAC}\)

18 tháng 11 2017

Hình vẽ:

A B C E D O

Giải:

a) Xét \(\Delta ABD\)\(\Delta ACE\), có:

\(\widehat{ADB}=\widehat{AEC}=90^0\left(gt\right)\)

\(\widehat{BAC}\) chung

\(AB=AC\left(gt\right)\)

\(\Rightarrow\Delta ABD=\Delta ACE\left(ch-gn\right)\)

b) Vì \(\Delta ABD=\Delta ACE\) (câu a)

\(\Rightarrow BD=CE\) (Hai cạnh tương ứng)

c) Ta có: \(AB=AC\left(gt\right)\)

\(AE=AD\left(\Delta ABD=\Delta ACE\right)\)

Lấy vế trừ vế, ta được:

\(\Leftrightarrow AB-AE=AC-AD\)

\(\Leftrightarrow BE=CD\)

Xét \(\Delta OEB\)\(\Delta ODC\), ta có:

\(BE=CD\) (Chứng minh trên)

\(\widehat{OEB}=\widehat{ODC}=90^0\left(gt\right)\)

\(\widehat{EBO}=\widehat{DCO}\) (\(\Delta ABD=\Delta ACE\))

\(\Rightarrow\Delta OEB=\Delta ODC\) (cạnh góc vuông _ góc nhọn kề)

d) Có BD và CE là đường cao của tam giác ABC

Mà BD cắt CE tại O

=> O là trực tâm của tam giác ABC

=> AO là đường cao thứ ba của tam giác ABC

Mà tam giác ABC là tam giác cân tại A (AB = AC)

=> AO đồng thời là tia phân giác của \(\widehat{BAC}\).

16 tháng 4 2018

HÌNH BẠN TỰ VẼ NHAhihi

a, Xét ΔABD=ΔEBD có:

BD chung

góc ABD=EBD

góc BAD=BED = 90 độ

=> ΔABD=ΔEBD ( cạnh huyền-góc nhọn)

b, ΔABD=ΔEBD => AB=EB

Xét ΔABI=ΔEBI có:

AB=EB

góc ABI=EBI

BI chung

=> ΔABI=ΔEBI ( c.g.c)

c. Có BC=BE+ EC

=> 10=BE+4

=> BE=6

mà BE=AB =6 cm

Xét tam giác ABC có:

\(BC^2=AB^2+AC^2\)

=> \(10^2=6^2+AC^2\)

=> \(AC^2=10^2-6^2\)

=> \(AC^2=64\)

=> AC=8

d, ΔABD=ΔEBD => ED=AD

Xét tam giác EDC vuông tại E => DC>DE

mà DE=AD

=> DC>AD

3 tháng 12 2017

a) chứng minh: tam giác ABD= tam giác ACD

xét tam giác ABD và tam giác ACD có:

AB=AC( giả thuyết)

AD: cạnh chung

Góc BDA=Góc ADC = 90 độ

suy ra: tam giác ABD = tam giác ACD (c.g.c)

31 tháng 12 2018

Violympic toán 7

31 tháng 12 2018

Góc A = 90 độ hay < 90 độ