Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D co
BE chung
BA=BD
=>ΔBAE=ΔBDE
b: BA=BD
EA=ED
=>BE là trung trực của AD
c: Xét ΔBDM vuông tại D và ΔBAC vuông tại A có
BD=BA
góc B chung
=>ΔBDM=ΔBAC
=>BM=BC
=>ΔBMC cân tại B
a: Xét ΔBAD và ΔBED có
BA=BE
\(\widehat{ABD}=\widehat{EBD}\)
BD chung
Do đó: ΔBAD=ΔBED
Suy ra: AD=ED
b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDC}\)
Do đó: ΔADF=ΔEDC
c: Ta có: ΔADF=ΔEDC
nên DF=DC và AF=EC
Ta có: BA+AF=BF
BE+EC=BC
mà BA=BE
và AF=EC
nên BC=BF
hay B nằm trên đường trung trực của CF(1)
Ta có: DF=DC
nên D nằm trên đường trung trực của CF(2)
Từ (1) và (2) suy ra BD\(\perp\)CF
Tham khảo
Câu hỏi của Hot girl 2k5 - Toán lớp 7 - Học toán với OnlineMath
mik ko hieu cau c cho lam, ai giang giup mik cau c voi :((
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: Xét ΔBEF vuông tại E và ΔBAC vuông tại A có
BE=BA
góc EBA chung
=>ΔBEF=ΔBAC
=>BF=BC
a) Vì tam giác BAC vuông tại A
=> AB^2 + AC^2 = BC^2 ( đl pytago )
=> BC^2 = 5^2 + 7^2 = 74
=> BC = căn bậc 2 của 74
b)
Xét tam giác ABE; tam giác DBE có :
AB = DB ( gt)
góc ABE = góc DBE ( gt)
BE chung
=> tam giác ABE = tam giác DBE (c.g.c) - đpcm
c)
Vì tam giác ABE = tam giác DBE (câu b)
=> AE = DE
Xét tg AEF ⊥ tại A; tg DEC ⊥ tại D:
AE = DE (c/m trên)
g AEF = g DEC (đối đỉnh)
=> tg AEF = tg DEC (cgv - gn) - đpcm
=> EF = EC
d)
Do tam giác AEF = tam giác DEC (câu c)
=> AE = DE
=> E ∈ đường trung trực của AD (1)
Lại do AB = BD (gt)
=> B ∈ đường trung trực của AD (2)
Từ (1) và (2) => BE là đường trung trực của AD. - đpcm
#\(N\)
*Sửa đề: `CD \bot AB` chứ không phải `AD, BE` cắt đoạn `CD` tại `O` chứ không phải đoạn `BD.`
`a,` Vì Tam giác `ABC` có `AB = AC ->`\(\widehat{B}=\widehat{C}\)
Xét Tam giác `BDC` và Tam giác `CEB` có:
`BC` chung
\(\widehat{B}=\widehat{C}\) `(CMT)`
\(\widehat{BDC}=\widehat{CEB}=90^0\)
`=>` Tam giác `BDC =` Tam giác `CEB (ch-gn)`
`-> BD = CE (2` cạnh tương ứng `)`
`b,` Xét Tam giác `ADC` và Tam giác `AEB` có:
`AB = AC (g``t)`
\(\widehat{A}\) chung
\(\widehat{AEB}=\widehat{ADC}=90^0\)
`=>` Tam giác `ADC =` Tam giác `AEB (ch-gn)`
`=>` \(\widehat{ABE}=\widehat{ACD}\) `( 2` góc tương ứng `)`
Xét Tam giác `OBD` và Tam giác `OCE` có:
\(\widehat{ODB}=\widehat{OEC}=90^0\)
`BD = CE (CMT)`
\(\widehat{DBO}=\widehat{ECO}\) `(CMT)`
`=>` Tam giác `OBD =` Tam giác `OCE (g-c-g)`
`c,` *Mình sẽ bổ sung sau nha bạn .-. câu này mình bị bí á .-.
câu c bn chỉ cần cm \(\Delta ADE\) cân tại \(A\Rightarrow\widehat{ADE}=\dfrac{180^0-\widehat{A}}{2}\) (1)
và \(\Delta ABC\) cân tại \(A\Rightarrow\widehat{ABC}=\dfrac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) suy ra góc ADE=góc ABC
mà 2 góc này ở vị trí đồng vị
=>đpcm