K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 10 2016

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

\(\Rightarrow\frac{a+b}{ab}=\frac{1}{ab}\)

\(\Rightarrow a+b=1\)

=> a ; b thỏa mãn a+b = 1 ( a;b khác 1)

6 tháng 10 2016

CTV nghĩa là gì thế Silver bullet??? hiu

Ta thấy a, b, c, d > 1 vì nếu một số bằng 1 thì tổng lớn hơn 1 

Nếu trong 4 số a, b, c, d có ít nhất 1 số lớn hơn 2 thì tổng đã cho có GTLN là :

\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{3\cdot3}< \frac{1}{4}\cdot4=1\)

Do đó a, b, c, d < 3 

Vậy a = b = c = d = 2, ta có :

\(\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}+\frac{1}{2\cdot2}=1\) ( đúng )

Cbht

13 tháng 7 2019

\(\text{= 1}\)

\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)

\(\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}+\frac{1}{2.2}\)=  1

\(4.\frac{1}{4}=1\)

vậy     {a ,b ,c ,d} =2

\(\frac{1}{aa}+\frac{1}{bb}+\frac{1}{cc}+\frac{1}{dd}\)\(=1\)

8 tháng 11 2018

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

chúc bạn học tốt !

23 tháng 4 2018

ta có \(\frac{a}{\sqrt{a+bc}}=\frac{a}{\sqrt{a\left(a+b+c\right)+bc}}=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

Tương tự rồi cộng lại = P<=3/2

dâu = xảy ra <=> a=b=c=1/3

^^

23 tháng 4 2018

Xét \(\frac{a}{\sqrt{a+bc}}=\sqrt{\frac{a^2}{a+bc}}\)

Ta có: a + bc = 1-b-c+bc ( Do a=1-b-c )  => a+bc = 1-b-c+bc = (b-1)(c-1)

=> \(\sqrt{\frac{a^2}{a+bc}}=\sqrt{\frac{a^2}{1-b-c+bc}}=\sqrt{\frac{a^2}{\left(b-1\right)\left(c-1\right)}}=\sqrt{\frac{a}{b-1}.\frac{a}{c-1}}\le\frac{1}{2}\left(\frac{a}{b-1}+\frac{b}{c-1}\right)\)

7 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

=> \(\frac{a+b}{ab}=\frac{1}{ab}\)=> a+b=1 => a,b là số nguyên sao cho a+b=1

7 tháng 1 2018

\(\frac{1}{a}+\frac{1}{b}=\frac{1}{ab}\)

\(\frac{b}{ab}+\frac{a}{ab}=\frac{1}{ab}\)

\(\frac{b+a}{ab}=\frac{1}{ab}\)

\(\Rightarrow b+a=1\)

Vậy các giá trị nguyên của a,b phụ thuộc vào b + a = 1

5 tháng 7 2016

xin cho hỏi cậu có viết sai đề bài ko vậy

17 tháng 12 2019

\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)

<=> \(\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1\)

<=> \(\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

<=> a + b + c = 0 hoặc a = b = c.

Th1: a + b + c = 0 

=> a + b = - c ; a + c = -b ; b + c = -a.

Thế vào P :

\(P=\left(1+\frac{a}{b}\right)\cdot\left(1+\frac{b}{c}\right)\cdot\left(1+\frac{c}{a}\right)\)

\(=\left(\frac{a+b}{b}\right)\cdot\left(\frac{b+c}{c}\right)\cdot\left(\frac{c+a}{a}\right)\)

\(=-\frac{c}{b}.\frac{\left(-a\right)}{c}.\frac{\left(-b\right)}{a}=-1\)

TH2: a = b = c. THế vào P 

\(P=\left(1+1\right).\left(1+1\right).\left(1+1\right)=8\)

Vậy: P = -1 nếu a + b + c = 0 

hoặc P = 8 nếu a = b = c.

17 tháng 12 2019

\(P=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=\frac{a+b}{b}.\frac{b+c}{c}.\frac{c+a}{a}\)

Ta có: \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{a+c}{b}\)\(\Rightarrow\frac{a+b}{c}+1=\frac{b+c}{a}+1=\frac{a+c}{b}+1=\frac{a+b+c}{c}=\frac{a+b+c}{a}=\frac{a+b+c}{b}\)

TH1: Nếu \(a+b+c=0\)\(\Rightarrow\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Rightarrow P=\frac{-c}{b}.\frac{-a}{c}.\frac{-b}{a}=\frac{\left(-a\right).\left(-b\right).\left(-c\right)}{abc}=-1\)

TH2: Nếu \(a+b+c\ne0\)\(\Rightarrow a=b=c\)

\(\Rightarrow\hept{\begin{cases}a+b=2b\\b+c=2c\\c+a=2a\end{cases}}\)\(\Rightarrow P=\frac{2b}{b}.\frac{2c}{c}.\frac{2a}{a}=2.2.2=8\)

Vậy \(P=-1\)hoặc \(P=8\)