Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm x biết:
\(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)
\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)
Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)
\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)
\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)
Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)
Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)
=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)
, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài
\(2016\sqrt{\left(x+1\right)^2}+2015\sqrt{\left(x-1\right)^2}\)
\(=2016\left|x+1\right|+2015\left|x-1\right|\) (1)
Ta thấy: \(\begin{cases}2016\left|x+1\right|\ge0\\2015\left|x-1\right|\ge0\end{cases}\)
\(\Rightarrow\left(1\right)\ge0\).Mà \(2016\left|x+1\right|+2015\left|x-1\right|\le0\)
\(\Rightarrow\begin{cases}2016\left|x+1\right|=0\\2015\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}\left|x+1\right|=0\\\left|x-1\right|=0\end{cases}\)\(\Rightarrow\begin{cases}x=-1\\x=1\end{cases}\)
Vô nghiệm (vì x ko nhận 2 giá trị khác nhau cùng lúc)
Vì \(\sqrt{\left(x+1\right)^2}\ge0;\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}\ge0;2015.\sqrt{\left(x-1\right)^2}\ge0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\ge0\)
Mà theo đề bài: \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}\le0\)
=> \(2016.\sqrt{\left(x+1\right)^2}+2015.\sqrt{\left(x-1\right)^2}=0\)
=> \(\begin{cases}2016.\sqrt{\left(x+1\right)^2}=0\\2015.\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}\sqrt{\left(x+1\right)^2}=0\\\sqrt{\left(x-1\right)^2}=0\end{cases}\)=> \(\begin{cases}x+1=0\\x-1=0\end{cases}\) => \(\begin{cases}x=-1\\x=1\end{cases}\)
, vô lý vì x không thể cùng lúc nhận 2 giá trị khác nhau
Vậy không tồn tại giá trị của x thỏa mãn đề bài