tìm min của bt \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\) (với a>0; b>0 ; \(a+b\le4\) )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3/ \(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+2\left(\frac{16}{ab}+ab\right)+\frac{2}{ab}\ge\)
\(\ge\frac{2.4}{\left(a+b\right)^2}+4\sqrt{\frac{16}{ab}.ab}+\frac{2.4}{\left(a+b\right)^2}\ge\frac{8}{4^2}+4\sqrt{16}+\frac{8}{4^2}=17\)
Dấu "=" xảy ra khi a = b = 2
Vậy Min P = 17 <=> a = b = 2
\(\frac{1}{a^2+b^2}+\frac{1}{2ab}\ge\frac{4}{\left(a+b\right)^2}\ge\frac{1}{4}\Rightarrow\frac{2}{a^2+b^2}+\frac{1}{ab}\ge\frac{1}{2}\)
\(\frac{32}{ab}+2ab\ge2\sqrt{64}=16\)(cô-si)
tự xét nốt 2/ab nhé
Áp dụng BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) và BĐT AM-GM ta có:
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{32}{ab}+2ab+\frac{2}{ab}\)
\(\ge\frac{2.4}{a^2+b^2+2ab}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\)
\(\ge\frac{8}{\left(a+b\right)^2}+2.\sqrt{64}+\frac{2}{\frac{\left(a+b\right)^2}{4}}\)
\(\ge\frac{8}{4^2}+2.8+\frac{8}{\left(a+b\right)^2}\ge\frac{1}{2}+16+\frac{8}{4^2}=\frac{1}{2}+16+\frac{1}{2}=17\)
Nên GTNN của P là 17 đạt được khi a=b=2
Ta có : \(4\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le4\)
Áp dụng bất đẳng thức \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bạn có thể chứng minh bằng biến đổi tương đương)
Ta có :\(P=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab=\left(\frac{2}{a^2+b^2}+\frac{1}{ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\left(\frac{32}{ab}+2ab\right)+\frac{2}{ab}\ge\frac{2.4}{\left(a+b\right)^2}+2\sqrt{\frac{32}{ab}.2ab}+\frac{2}{ab}\ge\frac{8}{4^2}+2.8+\frac{2}{4}=17\)Dấu đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}a=b\\a^2b^2=16\\0< a+b\le4\end{cases}\Leftrightarrow}a=b=2\)
Vậy \(MinP=17\Leftrightarrow a=b=2\)
Đầu tiên ta chứng minh bổ đề.
Ta có
\(6=3.\frac{a^2}{3}+2.\frac{b^2}{2}+c^2\)
\(\ge6.\sqrt[6]{\left(\frac{a^2}{3}\right)^3.\left(\frac{b^2}{2}\right)^2.c^2}=6.\sqrt[6]{\frac{a^6b^4c^2}{3^3.2^2}}\)
\(\Rightarrow a^6b^4c^2\le3^3.2^2\)
Ta lại có:
\(P=3.\frac{a}{3bc}+4.\frac{b}{2ca}+5.\frac{c}{ab}\)
\(\ge12.\sqrt[12]{\left(\frac{a}{3bc}\right)^3.\left(\frac{b}{2ca}\right)^4.\left(\frac{c}{ab}\right)^5}\)
\(=\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{a^6b^4c^2}}\)
\(\ge\frac{12}{\sqrt[12]{3^3.2^4}.\sqrt[12]{3^3.2^2}}=2\sqrt{6}\)
Dấu = xảy ra khi \(\hept{\begin{cases}a=\sqrt{3}\\b=\sqrt{2}\\c=1\end{cases}}\)
\(A=\frac{2}{a^2+b^2}+\frac{35}{ab}+2ab\)
\(=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17}{8}ab-\frac{1}{8}ab\)
\(\ge2.\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}.\frac{17}{8}ab}-\frac{1}{8}.\frac{\left(a+b\right)^2}{4}\)
\(\Leftrightarrow A\ge2.\frac{4}{\left(a+b\right)^2}+2.\frac{17}{2}-\frac{1}{8}.\frac{4}{4^2}+17-\frac{1}{2}\)
\(\Leftrightarrow A\ge\frac{1}{2}+17-\frac{1}{2}=17\)
Dấu " = " xảy ra \(\Leftrightarrow a=b=2\)
Chúc bạn học tốt !!!
\(P=\frac{2}{a^2+b^2}+\frac{2}{2ab}+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P=2\left(\frac{1}{a^2+b^2}+\frac{1}{2ab}\right)+\frac{34}{ab}+\frac{17ab}{8}-\frac{ab}{8}\)
\(P\ge2\cdot\frac{4}{a^2+b^2+2ab}+2\sqrt{\frac{34}{ab}\cdot\frac{17ab}{8}}-\frac{\frac{\left(a+b\right)^2}{4}}{8}\)
( do \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y};x+y\ge2\sqrt{xy};ab\le\frac{\left(a+b\right)^2}{4}\))
\(\Rightarrow P\ge\frac{8}{\left(a+b\right)^2}+2\sqrt{\frac{289}{4}}-\frac{\frac{4^2}{4}}{8}\)
\(\Rightarrow P\ge\frac{8}{16}+17-\frac{1}{2}=17\)
\(P=17\Leftrightarrow\left\{{}\begin{matrix}a^2+b^2=2ab\\\frac{34}{ab}=\frac{17ab}{8}\\a=b\\a+b=4\end{matrix}\right.\Leftrightarrow a=b=2\)
Vậy Min P = 17 \(\Leftrightarrow a=b=2\)