Cho hình chóp S.ABC đáy ABC là tam giác vuông cân tại với BA=BC=a, SA=a vuông góc với đáy. Gọi M, N là trung điểm AB và AC .Tính cosin góc giữa 2 mp (SAC) và (SBC)
Bạn nào giúp mình với ^^
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Kẻ B F ⊥ A C
Suy ra góc giữa hai mặt phẳng (SAC) và (SBC) là B H F ^
Nhận xét
Gọi (α) là mặt phẳng qua SM và song song với AB.
Ta có BC // (α) và (ABC) là mặt phẳng chứa BC nên (ABC) sẽ cắt (α) theo giao tuyến d đi qua M và song song với BC, d cắt AC tại N.
Ta có (α) chính là mặt phẳng (SMN). Vì M là trung điểm AB nên N là trung điểm AC.
+ Xác định khoảng cách.
Qua N kẻ đường thẳng d’ song song với AB.
Gọi (P) là mặt phẳng đi qua SN và d’.
Ta có: AB // (P).
Khi đó: d(AB, SN) = d(A, (P)).
Dựng AD ⊥ d’, ta có AB // (SDN). Kẻ AH vuông góc với SD, ta có AH ⊥ (SDN) nên:
d(AB, SN) = d(A, (SND)) = AH.
Trong tam giác SAD, ta có
Trong tam giác SAB, ta có S A = A B . tan 60 o = 2 a 3 và AD = MN = BC/2 = a.
Thế vào (1), ta được
Đáp án B
Dựng hình bình hành AKCI khi đó S C ; A I ⏜ = S C ; C K ⏜
Ta có: A B = C K = A B 2 + B C 2 2 = a 6 2
S K = S A 2 + A K 2 = S A 2 + C I 2 = a 6 2
Khi đó cos S C K ⏜ = S C 2 + C K 2 − S K 2 2 S C . C K = 2 3 > 0 Do đó c os S C ; A I ⏜ = 2 3
Đáp án: A.
Hướng dẫn giải: Gọi H là trung điểm của SB
⇒ IH song song với SC.
Do đó SC//(AHI)
Ta có A I = A B 2 + B I 2 = a 6 2
và I H = S C 2 = S A 2 + A C 2 2 = a
Áp dụng định lý cosin trong tam giác AHI, có
Đáp án là C.
Ta dễ chứng minh được tam giácACD vuông tại C, từ đó chứng minh được CN vuông góc với mặt phẳng (SAC) hay C là hình chiếu vuông góc của N trên (SAC). Đường thẳng MN cắt mặt phẳng (SAC) tại J xác định như hình vẽ. Suy ra góc giữa MN và (SAC) là góc NJC .
IN là đương trung bình trong tam giác ACD suy ra IN=a, IH là đường trung bình trong tam giác ABC suy ra I H = 1 2 B C = a 2 . Dựa vào định lí Talet trong tam giác MHN ta được I J = 2 3 M H = 2 3 . 1 2 S A = 1 3 S A = a 3 . Dựa vào tam giác JIC vuông tại I tính được J C = 22 6 .
Ta dễ tính được C N = a 2 2 , J N = a 10 3 .
Tam giác NJC vuông tại C nên cos N J C ^ = J C J N = 55 10 .
Do \(\Delta ABC\) là tam giác vuông cân và \(BA=BC\) nên \(\Delta ABC\) vuông cân tại \(B \) và \(AC=a\sqrt{2}\).
Trong mp (\(SAB \)) dựng \(AK\perp SB\) với \(K\in SB\)
Trong mp \((SAC)\) dựng \(AH\perp SC\) với \(H\in SC\)
Do \(SA\perp BC\) và \(AB\perp BC\) nên \(BC\perp\left(SAB\right)\)
\(\Rightarrow\) \(\left(SAB\right)\perp\left(SBC\right)\) \(\Rightarrow AK\perp\left(SBC\right)\)
\(\Rightarrow AK\perp SC\) mà \(AH\perp SC\) nên \(SC\perp\left(AHK\right)\)
\(\Rightarrow HK\perp SC\) mà \(\Delta AHK\) vuông tại \(K\) nên góc giữa 2 mp cần tính là \(\widehat{AHK}\)
Áp dụng hệ thức lượng trong tam giác vuông ta tính được \(AH=\dfrac{a\sqrt{2}}{\sqrt{3}}\) và \(AK=\dfrac{a}{\sqrt{2}}\)
\(\Rightarrow\sin\widehat{AHK}=\dfrac{\sqrt{3}}{2}\) \(\Rightarrow\cos\widehat{AHK}=\dfrac{1}{2}\)