Già sử x,y>0 thoả x+y=1Tìm GTNN của M=(x + 1/x)2 + (y + 1/y)2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có x2+y2 / x-y = x2-2xy+y2+2xy / x-y
= (x-y)2+2xy / x-y
Mà xy = 1 => 2xy = 2. Thay vào, ta có
(x-y)2+2xy / x-y = (x-y)2+2 / x-y = (x-y)2 / x-y + 2 / x-y
= x-y + 2 / x-y
Áp dụng BĐT Cauchy, ta có
x-y + 2 / x-y ≥ 2.√(x-y).2 / x-y] = 2.√2 = (√2)3
Vậy Min A = (√2)3
1.
\(x+y=1\Rightarrow x=1-y\)
\(\Rightarrow x^2+y^2=\left(1-y\right)^2+y^2=2y^2-2y+1=2\left(y^2-y+\dfrac{1}{2}\right)=2\left(y^2-2y\cdot\dfrac{1}{2}+\dfrac{1}{4}\right)+\dfrac{1}{2}=2\left(y-\dfrac{1}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\)
Vậy \(A_{Min}=\dfrac{1}{2}\Leftrightarrow x=y=\dfrac{1}{2}\)
2.
Ta có:
\(B=\dfrac{1}{x^2y^2}-\dfrac{1}{x^2}-\dfrac{1}{y^2}=\dfrac{1}{x^2y^2}-\dfrac{y^2}{x^2y^2}-\dfrac{x^2}{x^2y^2}=\dfrac{1-\left(x^2+y^2\right)}{x^2y^2}\le\dfrac{1-\dfrac{1}{2}}{\dfrac{1}{4}\cdot\dfrac{1}{4}}=\dfrac{\dfrac{1}{2}}{\dfrac{1}{8}}=\dfrac{1}{4}\)
Vậy \(B_{Max}=\dfrac{1}{4}\Leftrightarrow x=y=\dfrac{1}{2}\)
Tui chỉ làm bừa thui nha. K chắc lắm. Thử lại đi
Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)
\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)
\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)
\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)
\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)
\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)
\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Rightarrow x+y=0\Rightarrow y=-x\)
\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)
Dấu "=" xảy ra khi \(x=y=0\)
+ \(P=\frac{x}{y^2+1}+\frac{1}{y^2+1}+\frac{y}{z^2+1}+\frac{1}{z^2+1}+\frac{z}{x^2+1}+\frac{1}{x^2+1}\)
+ \(\frac{1}{x^2+1}=\frac{x^2+1-x^2}{x^2+1}=1-\frac{x^2}{x^2+1}\)
+ \(x^2+1\ge2x\forall x\)
\(\Rightarrow\frac{x^2}{x^2+1}\le\frac{x^2}{2x}=\frac{x}{2}\)
\(\Rightarrow-\frac{x^2}{x^2+1}\ge-\frac{x}{2}\)
\(\Rightarrow\frac{1}{x^2+1}\ge1-\frac{x}{2}\)
Dấu "=" xảy ra <=> x = 1
+ Tương tự ta cm đc :
\(\frac{1}{y^2+1}\ge1-\frac{y}{2}\). Dấu "=" xảy ra <=> y = 1
\(\frac{1}{z^2+1}\ge1-\frac{z}{2}\). Dấu "=" xảy ra <=> z = 1
Do đó : \(\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\left(\frac{x}{2}+\frac{y}{2}+\frac{z}{2}\right)\)
\(\Rightarrow\frac{1}{x^2+1}+\frac{1}{y^2+1}+\frac{1}{z^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (1)
Dấu "=" xảy ra <=> x = y = z = 1.
+ \(\frac{x}{y^2+1}=\frac{x\left(y^2+1\right)-xy^2}{y^2+1}=x-\frac{xy^2}{y^2+1}\)
\(\Rightarrow\frac{x}{y^2+1}\ge x-\frac{xy^2}{2y}=x-\frac{xy}{2}\) ( do \(y^2+1\ge2y\forall y\) )
Dấu "=" xảy ra <=> y = 1.
Tương tự : \(\frac{y}{z^2+1}\ge y-\frac{yz}{2}\). Dấu "=" xảy ra <=> z = 1.
\(\frac{z}{x^2+1}\ge z-\frac{zx}{2}\). Dấu "=" xảy ra <=> x = 1.
Do đó : \(\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge\left(x+y+z\right)-\frac{xy+yz+zx}{2}\)
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{\frac{\left(x+y+z\right)^2}{3}}{2}\)
( do \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\) )
\(\Rightarrow\frac{x}{y^2+1}+\frac{y}{z^2+1}+\frac{z}{x^2+1}\ge3-\frac{3}{2}=\frac{3}{2}\) (2)
Dấu "=" xảy ra <=> x = y = z = 1.
Từ (1) và (2) suy ra
\(P\ge\frac{3}{2}+\frac{3}{2}=3\)
P = 3 \(\Leftrightarrow x=y=z=1\)
Vậy Min P = 3 \(\Leftrightarrow x=y=z=1\).
`P=1/(x^2+y^2)+1/(xy)+4xy`
`=1/(x^2+y^2)+1/(2xy)+4xy+1/(4xy)+1/(4xy)`
Áp dụng bunhia dạng phân thức
`=>1/(x^2+y^2)+1/(2xy)>=4/(x+y)^2`
Mà `(x+y)^2<=1`
`=>1/(x^2+y^2)+1/(2xy)>=4`
Áp dụng cosi:
`4xy+1/(4xy)>=2`
`4xy<=(x+y)^2<=1`
`=>1/(4xy)>=1`
`=>P>=4+2+1=7`
Dấu "=" `<=>x=y=1/2`
Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.