K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2016

Ta có : \(B=x\left(x-3\right)\left(x+1\right)\left(x+4\right)\)

                \(=\left(x^2+x\right)\left(x^2-3x+4x-12\right)\)

                \(=\left(x^2+x\right)\left(x^2+x-12\right)\left(1\right)\)

Đặt \(x^2+x=t\)

\(\Rightarrow\left(1\right)\Leftrightarrow t\left(t-12\right)=t^2-12t=t^2-12t+36-36=\left(t-6\right)^2-36\)

Vì : \(\left(t-6\right)^2\ge0\)

\(\Rightarrow\left(t-6\right)^2-36\ge-36\)

Dấu " = " xảy ra khi \(t-6=0\)

                                   \(t=0+6\)

                                       \(t=6\)

\(\Rightarrow x^2+x+6\) \(x=2\) hoăc  \(x=-3\)

Vậy \(MIN_B=-36\) khi \(x=2;x=-3\)

2 tháng 9 2016

nhân lên r` đặt ẩn

21 tháng 9 2023

\(A=\left|x+1\right|-3\\ min_A=-3.khi.x+1=0\Leftrightarrow x=-1\\ B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\\ max_B=-\dfrac{1}{4}.khi.\left(x-\dfrac{3}{7}\right)=0\Leftrightarrow x=\dfrac{3}{7}\)

22 tháng 9 2023

a)

A = |x + 1| - 3 ≥ 0 - 3 = -3

Dấu "=" xảy ra khi x + 1 = 0 hay x = -1

Do đó A đạt GTNN là -3 khi x = -1

b)

\(B=-\left|x-\dfrac{3}{7}\right|-\dfrac{1}{4}\le-0-\dfrac{1}{4}=-\dfrac{1}{4}\)

Dấu "=" xảy ra khi khi \(x-\dfrac{3}{7}=0\) hay \(x=\dfrac{3}{7}\)

Do đó B đạt GTLN là \(-\dfrac{1}{4}\) khi \(x=\dfrac{3}{7}\)

a: \(f\left(x\right)=2x^2-7x+9\)

=>\(f'\left(x\right)=2\cdot2x-7=4x-7\)

Đặt f'(x)=0

=>\(4x-7=0\)

=>\(x=\dfrac{7}{4}\)

\(f\left(\dfrac{7}{4}\right)=2\cdot\left(\dfrac{7}{4}\right)^2-7\cdot\dfrac{7}{4}+9=\dfrac{23}{8}\)

\(f\left(-1\right)=2\left(-1\right)^2-7\cdot\left(-1\right)+9=18\)

\(f\left(4\right)=2\cdot4^2-7\cdot4+9=13\)

Vì \(f\left(\dfrac{7}{4}\right)< f\left(4\right)< f\left(-1\right)\)

nên \(f\left(x\right)_{max\left[-1;4\right]}=18;f\left(x\right)_{min\left[-1;4\right]}=\dfrac{23}{8}\)

b: \(f\left(x\right)=x^2+5x+3\)

=>\(f'\left(x\right)=2x+5\)

f'(x)=0

=>2x+5=0

=>2x=-5

=>\(x=-\dfrac{5}{2}\)

\(f\left(-\dfrac{5}{2}\right)=\left(-\dfrac{5}{2}\right)^2+5\cdot\dfrac{-5}{2}+3=\dfrac{25}{4}-\dfrac{25}{2}+3=-\dfrac{13}{4}\)

\(f\left(2\right)=2^2+5\cdot2+3=4+10+3=17\)

\(f\left(6\right)=6^2+5\cdot6+3=69\)

Vậy: \(f\left(x\right)_{max\left[2;6\right]}=69;f\left(x\right)_{min\left[2;6\right]}=-\dfrac{13}{4}\)

NV
1 tháng 8 2021

\(y=x+\dfrac{1}{x}-5\ge2\sqrt{\dfrac{x}{x}}-5=-3\)

\(y_{min}=-3\) khi \(x=1\)

\(y=4x^2+\dfrac{1}{2x}+\dfrac{1}{2x}-4\ge3\sqrt[3]{\dfrac{4x^2}{2x.2x}}-4=-1\)

\(y_{min}=-1\) khi \(x=\dfrac{1}{2}\)

\(y=x+\dfrac{4}{x}\Rightarrow y'=1-\dfrac{4}{x^2}=0\Rightarrow x=-2\)

\(y\left(-2\right)=-4\Rightarrow\max\limits_{x>0}y=-4\) khi \(x=-2\)

17 tháng 12 2022

C=|2x-3/5|+4/3>=4/3

Dấu = xảy ra khi x=3/10

D=|x-3|+|-x-2|>=|x-3-x-2|=5

Dấu = xảy ra khi -2<=x<=3

30 tháng 8 2023

\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)

vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)

\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)

Dấu "=" xảy ra khi và chỉ khi

\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)

Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)

30 tháng 8 2023

\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)

vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)

\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)

Dấu "=" xảy ra khi và chỉ khi

\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)

\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)