K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2017

Giả sử ƯCLN(a,c)=p(p\(\ge1\))

\(\Rightarrow a=p\times a1,c=p\times c1\)(a1,b1 là các số dương và (a1,c1)=1)

Từ đẳng thức ab=cd suy ra a1b=c1d do(a1,c1)=1 nên b\(⋮c1,d⋮a1\), ta có :

b=c1q và d=a1q(q\(\in Z^+\))

Từ đó suy ra : \(a^n+b^n+c^n+d^n=\left(a1^n+c1^n\right)\left(p^n+q^n\right)\)

do p\(\ge1,q\ge1\) nên p^n+q^n >=2 và a1,c1 là các số dương nên a^n+b^n+c^n+d^n là hợp số

18 tháng 3 2017

Chưa hiểu lắm

24 tháng 4 2017

Đặt (a;c)=q thì a=\(qa_1\) ;    c=\(qc_1\) (Vs (a1;c1=1)

\(\Rightarrow\) ab=cd \(\Leftrightarrow\)ba1=dc1
Dẫn đến \(d⋮a_1\)

Đặt   \(d=a_1d_1\) thay vào đc:
\(b=d_1c_1\)
Vậy \(a^n+b^n+c^n+d^n=q^2a^n_1+d^n_1c^n_1+q^nc^n_1+a^n_1d^n_1=\left(c^n_1+a^n_1\right)\left(d^n_1+q^n\right)\)
là hợp số (QED)   

2 tháng 7 2015

đúng thật là hạng tiểu nhân

lên OLM là để làm toán giúp đỡ mọi người chứ ko phải là vì l i k e hiểu chứ?

còn làm toán chỉ vì l i k e thì cũng chẳng ra gì

chung ta làm toán là vì trước hết có lòng đam mê với môn học này đã