4, giải pt: sin4x.sin7x=cos3x.cos6x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình tương đương:
sin4x.sin7x-cos3x.cos6x=0
<=> \(\frac{-1}{2}\)cos11x+\(\frac{1}{2}\)cos3x-\(\frac{1}{2}\)cos9x-\(\frac{1}{2}\)cos3x=0
<=> -\(\frac{1}{2}\)( cos11x+cos9x)=0
<=> cos 11x+cos9x=0
<=> 2cos10x.cosx=0
<=>\(\left[\begin{array}{nghiempt}cos10x=0\\cosx=0\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{20}+\frac{k\pi}{10}\end{array}\right.\) với k \(\in\)Z
vậy có 2 nghiệm trên đó
`x^2 + 2(m-1)x + m^2 = 0`
Thay `m=0` vào pt và giải ta được :
`x^2 - 6x + 16 = 0`
Vì `x^2 - 6x + 16 > 0` với mọi `x`
`=>` vô nghiệm
Vậy `S = RR`
Thay `m=-4` vào pt và giải ta được :
`x^2 + 10x + 16 = 0`
`\Delta = 10^2 - 4*1*16 = 36 > 0`
`=> \sqrt{\Delta} = 6`
`=>` Phương trình có 2 nghiệm phân biệt :
`x_1 = (-10+6)/(2*1) = -2`
`x_2 = (-10-6)/(2*1) = -8`
Vậy `S = {-2,-8}`
ta có : x^5+2x^4+3x^3+3x^2+2x+1=0
\(\Leftrightarrow\)x^5+x^4+x^4+x^3+2x^3+2x^2+x^2+x+x+1=0
\(\Leftrightarrow\)(x^5+x^4)+(x^4+x^3)+(2x^3+2x^2)+(x^2+x)+(x+1)=0
\(\Leftrightarrow\)x^4(x+1)+x^3(x+1)+2x^2(x+1)+x(x+1)+(x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+2x^2+x+1)=0
\(\Leftrightarrow\)(x+1)(x^4+x^3+x^2+x^2+x+1)=0
\(\Leftrightarrow\)(x+1)[x^2(x^2+x+1)+(x^2+x+1)]=0
\(\Leftrightarrow\)(x+1)(x^2+x+1)(x^2+1)=0
VÌ x^2+x+1=(x+\(\dfrac{1}{2}\))^2+\(\dfrac{3}{4}\)\(\ne0\) và x^2+1\(\ne0\)
\(\Rightarrow\)x+1=0
\(\Rightarrow\)x=-1
CÒN CÂU B TỰ LÀM (02042006)
b: x^4+3x^3-2x^2+x-3=0
=>x^4-x^3+4x^3-4x^2+2x^2-2x+3x-3=0
=>(x-1)(x^3+4x^2+2x+3)=0
=>x-1=0
=>x=1
a: =>3x^2-6x-x+2=0
=>(x-2)(3x-1)=0
=>x=2 hoặc x=1/3
b: =>x^4-x-4x+4=0
=>x(x-1)(x^2+x+1)-4(x-1)=0
=>(x-1)(x^3+x^2+x-4)=0
=>x-1=0 hoặc x^3+x^2+x-4=0
=>x=1 hoặc x=1,15
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ bên trái khung soạn thảo) để được hỗ trợ tốt hơn.
cho PT 2x^2-3x-1=0. x1, x2 là 2 nghiệm của PT, không giải PT hãy tính A = x1^4 + x2^4. B = I x1-x2 I
a, ĐKXĐ : x ≠ 4
b,
\(\Leftrightarrow3x+2=2\left(x-4\right)\)
\(\Leftrightarrow3x+2=2x-8\)
\(\Leftrightarrow x=-10\) (N)
Vậy : ...
\(\left|-3x\right|=4\)
\(\Leftrightarrow3\left|x\right|=4\)
\(\Leftrightarrow\left|x\right|=\dfrac{4}{3}\)
\(\Rightarrow x=\pm\dfrac{4}{3}\)
\(\left|-3x\right|=4\)
\(\Rightarrow-3x=\pm4\)
\(\Rightarrow\left[{}\begin{matrix}-3x=4\\-3x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=\dfrac{4}{3}\end{matrix}\right.\)
Ta có : \(\cos3x-\cos11x\)
\(=\cos9x+\cos3x\)
\(=\cos11x\)
\(=\cos\left(\pi-9x\right)\)