Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
phương trình tương đương:
sin4x.sin7x-cos3x.cos6x=0
<=> \(\frac{-1}{2}\)cos11x+\(\frac{1}{2}\)cos3x-\(\frac{1}{2}\)cos9x-\(\frac{1}{2}\)cos3x=0
<=> -\(\frac{1}{2}\)( cos11x+cos9x)=0
<=> cos 11x+cos9x=0
<=> 2cos10x.cosx=0
<=>\(\left[\begin{array}{nghiempt}cos10x=0\\cosx=0\end{array}\right.\)
<=>\(\left[\begin{array}{nghiempt}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{20}+\frac{k\pi}{10}\end{array}\right.\) với k \(\in\)Z
vậy có 2 nghiệm trên đó
Tại sao cos 2x =1-t^2 / 1 + t^2 vậy
Tính bằng cách nào vậy????
Lời giải:
PT $\Leftrightarrow 2\sin 2x\cos 2x+2\cos 2x+4(\sin x+\cos x)=1+\cos ^22x-\sin ^22x=2\cos ^22x$
$\Leftrightarrow \sin 2x\cos 2x+\cos 2x+2(\sin x+\cos x)=\cos ^22x$
$\Leftrightarrow \cos 2x(\sin 2x+1-\cos 2x)+2(\sin x+\cos x)=0$
$\Leftrightarrow \cos 2x(2\sin x\cos x+2\sin ^2x)+2(\sin x+\cos x)=0$
$\Leftrightarrow \cos 2x\sin x(\cos x+\sin x)+(\sin x+\cos x)=0$
$\Leftrightarrow (\sin x+\cos x)(\cos 2x\sin x+1)=0$
Nếu $\sin x+\cos x=0$. Kết hợp $\sin ^2x+\cos ^2x=1$ suy ra $(\sin x, \cos x)=(\frac{1}{\sqrt{2}}; \frac{-1}{\sqrt{2}})$ và hoán vị
$\Rightarrow x=k\pi -\frac{\pi}{4}$ với $k$ nguyên.
Nếu $\cos 2x\sin x+1=0$
$\Leftrightarrow (1-2\sin ^2x)\sin x+1=0$
$\Leftrightarrow (1-\sin x)(2\sin ^2x+2\sin x+1)=0$
$\Rightarrow \sin x=1$
$\Rightarrow x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=2cos2x\)
\(\Leftrightarrow1-\frac{1}{2}sin^22x=2cos2x\)
\(\Leftrightarrow2-\left(1-cos^22x\right)=4cos2x\)
\(\Leftrightarrow cos^22x-4cos2x+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=2+\sqrt{3}>1\left(l\right)\\cos2x=2-\sqrt{3}\end{matrix}\right.\)
\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(2-\sqrt{3}\right)+k\pi\)
ĐKXĐ: ...
\(\Leftrightarrow\left(tan^2x-1\right)\left(tan^2x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}tan^2x=1\\tan^2x=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}sin^2x=cos^2x\\sin^2x=3cos^2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos^2x-sin^2x=0\\\frac{1}{2}-\frac{1}{2}cos2x=\frac{3}{2}+\frac{3}{2}cos2x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=-\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+\frac{k\pi}{2}\\x=\pm\frac{\pi}{3}+k\pi\end{matrix}\right.\)
\(sinx=-\dfrac{4}{3}< -1\)
\(\Rightarrow\)Phương trình vô nghiệm
\(\Leftrightarrow3.\left(1-cos6x\right)+2.cos^26x-1=4\)
\(\Leftrightarrow2.cos^26x-3.cos6x-2=0\)
\(\Leftrightarrow\left(cos6x-2\right)\left(2.cos6x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos6x=2\left(vn\right)\\cos6x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}6x=\dfrac{2\pi}{3}+k2\pi\\6x=-\dfrac{2\pi}{3}+k2\pi\end{matrix}\right.\) (\(k\in Z\)) \(\Leftrightarrow\)\(\left[{}\begin{matrix}x\ne\dfrac{\pi}{9}+\dfrac{k\pi}{3}\\x\ne\dfrac{-\pi}{9}+\dfrac{k\pi}{3}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
Ta có : \(\cos3x-\cos11x\)
\(=\cos9x+\cos3x\)
\(=\cos11x\)
\(=\cos\left(\pi-9x\right)\)