K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 7 2020

Tại sao cos 2x =1-t^2 / 1 + t^2 vậy

Tính bằng cách nào vậy????

24 tháng 7 2020

Bạn ơi

NV
19 tháng 10 2020

\(\Leftrightarrow\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x=2cos2x\)

\(\Leftrightarrow1-\frac{1}{2}sin^22x=2cos2x\)

\(\Leftrightarrow2-\left(1-cos^22x\right)=4cos2x\)

\(\Leftrightarrow cos^22x-4cos2x+1=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=2+\sqrt{3}>1\left(l\right)\\cos2x=2-\sqrt{3}\end{matrix}\right.\)

\(\Leftrightarrow x=\pm\frac{1}{2}arccos\left(2-\sqrt{3}\right)+k\pi\)

AH
Akai Haruma
Giáo viên
16 tháng 9 2020

Lời giải:

PT $\Leftrightarrow 2\sin 2x\cos 2x+2\cos 2x+4(\sin x+\cos x)=1+\cos ^22x-\sin ^22x=2\cos ^22x$

$\Leftrightarrow \sin 2x\cos 2x+\cos 2x+2(\sin x+\cos x)=\cos ^22x$

$\Leftrightarrow \cos 2x(\sin 2x+1-\cos 2x)+2(\sin x+\cos x)=0$

$\Leftrightarrow \cos 2x(2\sin x\cos x+2\sin ^2x)+2(\sin x+\cos x)=0$

$\Leftrightarrow \cos 2x\sin x(\cos x+\sin x)+(\sin x+\cos x)=0$

$\Leftrightarrow (\sin x+\cos x)(\cos 2x\sin x+1)=0$

Nếu $\sin x+\cos x=0$. Kết hợp $\sin ^2x+\cos ^2x=1$ suy ra $(\sin x, \cos x)=(\frac{1}{\sqrt{2}}; \frac{-1}{\sqrt{2}})$ và hoán vị

$\Rightarrow x=k\pi -\frac{\pi}{4}$ với $k$ nguyên.

Nếu $\cos 2x\sin x+1=0$

$\Leftrightarrow (1-2\sin ^2x)\sin x+1=0$

$\Leftrightarrow (1-\sin x)(2\sin ^2x+2\sin x+1)=0$

$\Rightarrow \sin x=1$

$\Rightarrow x=2k\pi +\frac{\pi}{2}$ với $k$ nguyên.

NV
15 tháng 7 2020

Có 2 cách giải bài này:

Cách 1.

Nhận thấy \(cos2x=0\) không phải nghiệm, chia 2 vế cho \(cos2x\) ta được:

\(2+\frac{sin2x}{cos2x}=0\Leftrightarrow2+tan2x=0\Rightarrow tan2x=-2\)

Đặt \(tana=-2\Rightarrow tan2x=tana\)

\(\Rightarrow2x=a+k\pi\Rightarrow x=\frac{a}{2}+\frac{k\pi}{2}\)

(Hoặc sử dụng trực tiếp \(2x=arctan\left(-2\right)+k\pi\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\))

Cách 2:

Với dạng \(a.sint+b.cost=c\) thì cách giải chung là chia 2 vế cho \(\sqrt{a^2+b^2}\) , khi đó 2 hệ số \(\frac{a}{\sqrt{a^2+b^2}}\)\(\frac{b}{\sqrt{a^2+b^2}}\) có tổng bình phương bằng 1 nên có thể đặt thành sin, cos và sử dụng công thức lượng giác

Chia 2 vế cho \(\sqrt{5}\) ta được:

\(\frac{1}{\sqrt{5}}sin2x+\frac{2}{\sqrt{5}}cos2x=0\) (để ý rằng \(\left(\frac{1}{\sqrt{5}}\right)^2+\left(\frac{2}{\sqrt{5}}\right)^2=1\) là 1 tính chất cơ bản của sin, cos)

Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{5}}=cosa\\\frac{2}{\sqrt{5}}=sina\end{matrix}\right.\) ta được

\(sin2x.sina+cos2x.cosa=0\)

\(\Leftrightarrow sin\left(2x+a\right)=0\)

\(\Rightarrow2x+a=k\pi\Rightarrow x=-\frac{a}{2}+\frac{k\pi}{2}\)

15 tháng 7 2020

Trần Quốc Lộc: cho e hỏi từ cái trên sao suy ra đc \(cos2x=\pm\frac{1}{5}\) nhanh vậy ah, a giai thichs giup em vs??

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

NV
31 tháng 7 2020

c/

\(\Leftrightarrow\sqrt{2}sin\left(x+\frac{\pi}{4}-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sinx=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k2\pi\\x=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

d/

\(\Leftrightarrow sin2x-2cos2x-5=2sin2x-cos2x-6\)

\(\Leftrightarrow sin2x+cos2x=1\)

\(\Leftrightarrow\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow sin\left(2x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Rightarrow\left[{}\begin{matrix}2x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\2x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=k\pi\\x=\frac{\pi}{4}+k\pi\end{matrix}\right.\)

NV
31 tháng 7 2020

a/ ĐKXĐ:...

\(\Leftrightarrow\frac{sinx}{cosx}-\frac{\sqrt{2}}{cosx}=1\)

\(\Leftrightarrow sinx-\sqrt{2}=cosx\)

\(\Leftrightarrow sinx-cosx=\sqrt{2}\)

\(\Leftrightarrow\sqrt{2}sin\left(x-\frac{\pi}{4}\right)=\sqrt{2}\)

\(\Leftrightarrow sin\left(x-\frac{\pi}{4}\right)=1\)

\(\Leftrightarrow x-\frac{\pi}{4}=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{3\pi}{4}+k2\pi\)

b/

ĐKXĐ: ...

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x-1\right)+cos4x\left(2sinx-1\right)=0\)

\(\Leftrightarrow2sinx.sin4x-2sinx-sin4x+1+2sinx.cos4x-cos4x=0\)

\(\Leftrightarrow2sinx\left(sin4x+cos4x\right)-\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x\right)-\left(2sinx-1\right)=0\)

\(\Leftrightarrow\left(2sinx-1\right)\left(sin4x+cos4x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin4x+cos4x=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\sin\left(4x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\4x+\frac{\pi}{4}=\frac{\pi}{4}+k2\pi\\4x+\frac{\pi}{4}=\frac{3\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k\pi}{2}\\x=\frac{\pi}{8}+\frac{k\pi}{2}\left(l\right)\end{matrix}\right.\)

NV
4 tháng 10 2020

\(\Leftrightarrow\left\{{}\begin{matrix}2\left(2cos^2x-1\right)-4cosx-1=0\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4cos^2x-4cosx-3=0\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}cosx=\frac{3}{2}\left(l\right)\\cosx=-\frac{1}{2}\end{matrix}\right.\\sinx\ge0\end{matrix}\right.\)

\(\Leftrightarrow x=\frac{2\pi}{3}+k2\pi\)