K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 7 2020

Có 2 cách giải bài này:

Cách 1.

Nhận thấy \(cos2x=0\) không phải nghiệm, chia 2 vế cho \(cos2x\) ta được:

\(2+\frac{sin2x}{cos2x}=0\Leftrightarrow2+tan2x=0\Rightarrow tan2x=-2\)

Đặt \(tana=-2\Rightarrow tan2x=tana\)

\(\Rightarrow2x=a+k\pi\Rightarrow x=\frac{a}{2}+\frac{k\pi}{2}\)

(Hoặc sử dụng trực tiếp \(2x=arctan\left(-2\right)+k\pi\Rightarrow x=\frac{arctan\left(-2\right)}{2}+\frac{k\pi}{2}\))

Cách 2:

Với dạng \(a.sint+b.cost=c\) thì cách giải chung là chia 2 vế cho \(\sqrt{a^2+b^2}\) , khi đó 2 hệ số \(\frac{a}{\sqrt{a^2+b^2}}\)\(\frac{b}{\sqrt{a^2+b^2}}\) có tổng bình phương bằng 1 nên có thể đặt thành sin, cos và sử dụng công thức lượng giác

Chia 2 vế cho \(\sqrt{5}\) ta được:

\(\frac{1}{\sqrt{5}}sin2x+\frac{2}{\sqrt{5}}cos2x=0\) (để ý rằng \(\left(\frac{1}{\sqrt{5}}\right)^2+\left(\frac{2}{\sqrt{5}}\right)^2=1\) là 1 tính chất cơ bản của sin, cos)

Đặt \(\left\{{}\begin{matrix}\frac{1}{\sqrt{5}}=cosa\\\frac{2}{\sqrt{5}}=sina\end{matrix}\right.\) ta được

\(sin2x.sina+cos2x.cosa=0\)

\(\Leftrightarrow sin\left(2x+a\right)=0\)

\(\Rightarrow2x+a=k\pi\Rightarrow x=-\frac{a}{2}+\frac{k\pi}{2}\)

15 tháng 7 2020

Trần Quốc Lộc: cho e hỏi từ cái trên sao suy ra đc \(cos2x=\pm\frac{1}{5}\) nhanh vậy ah, a giai thichs giup em vs??

1 tháng 6 2021

1.

\(2sin\left(x+\dfrac{\pi}{6}\right)+sinx+2cosx=3\)

\(\Leftrightarrow\sqrt{3}sinx+cosx+sinx+2cosx=3\)

\(\Leftrightarrow\left(\sqrt{3}+1\right)sinx+3cosx=3\)

\(\Leftrightarrow\sqrt{13+2\sqrt{3}}\left[\dfrac{\sqrt{3}+1}{\sqrt{13+2\sqrt{3}}}sinx+\dfrac{3}{\sqrt{13+2\sqrt{3}}}cosx\right]=3\)

Đặt \(\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(pt\Leftrightarrow\sqrt{13+2\sqrt{3}}sin\left(x+\alpha\right)=3\)

\(\Leftrightarrow sin\left(x+\alpha\right)=\dfrac{3}{\sqrt{13+2\sqrt{3}}}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\alpha=arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\\x+\alpha=\pi-arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\end{matrix}\right.\)

Vậy phương trình đã cho có nghiệm:

\(x=k2\pi;x=\pi-2arcsin\dfrac{3}{\sqrt{13+2\sqrt{3}}}+k2\pi\)

1 tháng 6 2021

2.

\(\left(sin2x+cos2x\right)cosx+2cos2x-sinx=0\)

\(\Leftrightarrow2sinx.cos^2x+cos2x.cosx+2cos2x-sinx=0\)

\(\Leftrightarrow\left(2cos^2x-1\right)sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.sinx+cos2x.cosx+2cos2x=0\)

\(\Leftrightarrow cos2x.\left(sinx+cosx+2\right)=0\)

\(\Leftrightarrow cos2x=0\)

\(\Leftrightarrow2x=\dfrac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

Vậy phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)

9 tháng 4 2022

P/t \(\Leftrightarrow2cos2x.sin2x-sin2x+2cos^22x-cos2x-1=0\)

\(\Leftrightarrow sin4x-sin2x+cos4x-cos2x=0\)

\(\Leftrightarrow2sinx.cos3x-2sin3x.sinx=0\)

\(\Leftrightarrow sinx\left(cos3x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx=0\left(1\right)\\cos3x=sin3x\left(2\right)\end{matrix}\right.\) 

(1) \(\Leftrightarrow x=k\pi\left(k\in Z\right)\)

(2) \(\Leftrightarrow sin3x-cos3x=0\)  \(\Leftrightarrow\sqrt{2}sin\left(3x-\dfrac{\pi}{4}\right)=0\)

\(\Leftrightarrow3x-\dfrac{\pi}{4}=k\pi\Leftrightarrow x=\dfrac{\pi}{12}+\dfrac{k\pi}{3}\left(k\in Z\right)\)

Vậy ... 

29 tháng 8 2019

ĐK: 1 - sin2x ≠ 0 <=> sin2x ≠ 1 <=> x ≠ π/4 + kπ

(*) <=> 2cos2x = 0

<=> cos2x = 0

<=> 2x = π/2 + kπ

<=> x = π/4 + kπ/2 (k thuộc Z)

So vs ĐK ta đc: x = 3π/4 + kπ (k thuộc Z)

Vậy ...

22 tháng 10 2019

1   +   sin x   -   cos x   -   sin 2 x   +   2 cos 2 x   =   0   ( 1 )     T a   c ó :     1   -   sin 2 x   =   sin x   -   cos x 2     ⇔   2 cos 2 x   =   2 ( cos 2 x   -   sin 2 x )   =   - 2 ( sin x   -   cos x ) ( sin x   +   cos x )     V ậ y   ( 1 )   ⇔   ( sin x   -   cos x ) ( 1   +   sin x   -   cos x   -   2 sin x   -   2 cos x )   =   0     ⇔   ( sin x   -   cos x ) ( 1   -   sin x   -   3 cos x )   =   0

Giải sách bài tập Toán 11 | Giải sbt Toán 11

16 tháng 8 2021

a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4

<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0

- sinx=1 => 2cos2x-2cosx+2=0 

pt trên vn

16 tháng 8 2021

b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0

<=> cos(2sinx-1)+2sin2x+3sinx-2=0

<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0

<=> (2sinx-1)(cosx+sinx+2)=0

<=> sinx=1/2 hoặc cosx+sinx=-2(vn)

<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)

NV
8 tháng 8 2020

d.

\(\Leftrightarrow\left(sin^2x-cos^2x\right)\left(sin^2x+cos^2x\right)=0\)

\(\Leftrightarrow sin^2x-cos^2x=0\)

\(\Leftrightarrow-cos2x=0\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+\frac{k\pi}{2}\)

e. Đề thiếu

f.

\(\Leftrightarrow sin2x=\left(cos^2\frac{x}{2}-sin^2\frac{x}{2}\right)\left(cos^2\frac{x}{2}+sin^2\frac{x}{2}\right)\)

\(\Leftrightarrow sin2x=cos^2\frac{x}{2}-sin^2\frac{x}{2}\)

\(\Leftrightarrow sin2x=cosx\)

\(\Leftrightarrow sin2x=sin\left(\frac{\pi}{2}-x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}2x=\frac{\pi}{2}-x+k2\pi\\2x=x-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+\frac{k2\pi}{3}\\x=-\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

NV
8 tháng 8 2020

a.

\(\Leftrightarrow\left[{}\begin{matrix}sinx=-1\\sinx=\sqrt{2}>1\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=-\frac{\pi}{2}+k2\pi\)

b.

\(\Leftrightarrow sin2x=1\)

\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)

c.

\(\Leftrightarrow2sin2x.cos2x=-1\)

\(\Leftrightarrow sin4x=-1\)

\(\Leftrightarrow4x=-\frac{\pi}{2}+k2\pi\)

\(\Leftrightarrow x=-\frac{\pi}{8}+\frac{k\pi}{2}\)

11 tháng 12 2020

Thấy cosx= 0 là nghiệm của phương trình => \(x=\dfrac{\pi}{2}+k\pi\)

Xét cosx khác 0, chia cả 2 vế cho cos^2 x

\(\Leftrightarrow\tan^2x-\sqrt{3}\tan x+2=1+\tan^2x\)

\(\Leftrightarrow\tan x=\dfrac{\sqrt{3}}{3}\Leftrightarrow x=\dfrac{\pi}{6}+k\pi\)