Cho tam giác ABC có trung tuyến CM vuông góc với trung tuyến BN. Chứng minh:
\(AC^2+AB^2=5BC^2\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C B A M N x y 2y 2x O
Giả sử hai đường trung tuyến CM và BN vuông góc với nhau tại O.
Đặt OM = y , ON = x (x,y > 0) , suy ra OB = 2x , OC = 2y
Ta có : \(AB^2=\left(2BM\right)^2=4BM^2=4\left(4x^2+y^2\right)\)
\(AC^2=\left(2CN\right)^2=4CN^2=4\left(4y^2+x^2\right)\)
\(\Rightarrow AB^2+AC^2=4\left(4x^2+y^2\right)+4\left(4y^2+x^2\right)\)
\(=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5\left[\left(2x\right)^2+\left(2y\right)^2\right]\)
\(=5\left(OB^2+OC^2\right)=BC^2\)
\(\Rightarrow AB^2+AC^2=5BC^2\)
Bạn tham khảo nha : https://diendantoanhoc.net/topic/53004-cho-tam-giac-abc-va-hai-trung-tuy%E1%BA%BFn-bn-va-cm-vuong-goc-v%E1%BB%9Bi-nhau-ch%E1%BB%A9ng-minh-cotgbcotgc-23/page-1
a)
câu 2 :
a) có phải là chứng minh AM ⊥ BC không
xét ΔAMB và ΔAMC, ta có :
AB = AC (2 cạnh bên của ΔABC cân tại A)
MB = MC (AM là đường trung tuyến của cạnh BC)
AM là cạnh chung
=> ΔAMB = ΔAMC (c.c.c)
=> \(\widehat{AMB}=\widehat{AMC}\) (2 cạnh tương ứng)
mà \(\widehat{AMB}+\widehat{AMC}=180^O\) (kề bù)
\(\Rightarrow\widehat{AMB}=\widehat{AMC}=\dfrac{180^O}{2}=90^O\)
=> AM ⊥ BC
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC~ΔHBA
=>\(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
=>\(BA^2=BH\cdot BC\)
b: Sửa đề: Đường trung tuyến CM của ΔABC cắt HD tại N
Ta có: HD\(\perp\)AC
AB\(\perp\)AC
Do đó: HD//AB
=>ND//AM và HN//MB
Xét ΔCAM có ND//AM
nên \(\dfrac{ND}{AM}=\dfrac{CN}{CM}\left(1\right)\)
Xét ΔCMB có NH//MB
nên \(\dfrac{NH}{MB}=\dfrac{CN}{CM}\left(2\right)\)
Từ (1) và (2) suy ra \(\dfrac{ND}{AM}=\dfrac{NH}{MB}\)
mà AM=MB
nên ND=NH
=>N là trung điểm của DH
Bạn tự vẽ hình :)
Gọi O là giao điểm của BN và CM . Đặt ON = x , OM = y
Ta có : AB2 = 4MB2=4.(4x2+y2)
AC2=4.NC2=4.(x2+4y2)
\(\Rightarrow AB^2+AC^2=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5BC^2\)
làm sao đoạn đầu ra đc 4x^2.