K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn tham khảo nha : https://diendantoanhoc.net/topic/53004-cho-tam-giac-abc-va-hai-trung-tuy%E1%BA%BFn-bn-va-cm-vuong-goc-v%E1%BB%9Bi-nhau-ch%E1%BB%A9ng-minh-cotgbcotgc-23/page-1

17 tháng 8 2021

a)

  • Gọi AH,AM lần lượt là đường cao, đường trung tuyến của tam giác ABC, G là trọng tâm tam giác ABC
  • Ta có: \(AH\le AM\Rightarrow\frac{1}{AH}\ge\frac{1}{AM}\Rightarrow\frac{1}{AH}\ge\frac{1}{3GM}\)( do G là trọng tâm tam giác ABC)\(\left(1\right)\)
  • Xét tam giác BGC vuông tại G có BM là trung tuyến( do M là trung điểm BC)\(\Rightarrow2GM=BC\left(2\right)\)
  • \(\cot B+\cot C=\frac{BH}{AH}+\frac{HC}{AH}=\frac{BC}{AH}\left(3\right)\)
  • Từ \(\left(1\right),\left(2\right),\left(3\right)\Rightarrow\cot B+\cot C\ge\frac{2}{3}\left(đpcm\right)\)
14 tháng 8 2016

C B A M N x y 2y 2x O

Giả sử hai đường trung tuyến CM và BN vuông góc với nhau tại O.

Đặt OM = y , ON = x (x,y > 0) , suy ra OB = 2x , OC = 2y

Ta có : \(AB^2=\left(2BM\right)^2=4BM^2=4\left(4x^2+y^2\right)\)

\(AC^2=\left(2CN\right)^2=4CN^2=4\left(4y^2+x^2\right)\)

\(\Rightarrow AB^2+AC^2=4\left(4x^2+y^2\right)+4\left(4y^2+x^2\right)\)

\(=4\left(5x^2+5y^2\right)=5\left(4x^2+4y^2\right)=5\left[\left(2x\right)^2+\left(2y\right)^2\right]\)

\(=5\left(OB^2+OC^2\right)=BC^2\)

\(\Rightarrow AB^2+AC^2=5BC^2\)

4 tháng 5 2016

Bài 1:

 Áp dụng BĐT Cô-si:

\(\frac{ab}{c}+\frac{bc}{a}\ge2\sqrt{\frac{ab}{c}.\frac{bc}{a}}=2b\)

CMTT rồi cộng lại, ta có đpcm.

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)a. So sánh IN và IPb. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)a. CM: CD>ABb. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH4) CHo \(\Delta ABC\)nhọn, các đường trung...
Đọc tiếp

1) Cho \(\Delta MNP\)(MN<MP), MI là đường phân giác của \(\Delta MNP\)

a. So sánh IN và IP

b. Trên tia đối của tia IM lấy điểm A. SO sánh NA và PA.

2) Cho \(\Delta ABC\)vuông ở A (AB<AC) có AH là đường cao. So sánh AH+BC và AB+AC.

3) CHo \(\Delta ABC\)có góc A=80 độ, góc B=70 độ, AD là đường phân giác của \(\Delta ABC\)

a. CM: CD>AB

b. Vẽ BH vuông góc với AD (H thuộc AD). CMR: CD=2BH

4) CHo \(\Delta ABC\)nhọn, các đường trung tuyến BD, CE vuông góc với nhau. Giả sử AB=6cm, AC=8cm. Tính độ dài BC?

5) Cho \(\Delta ABC\)có đường cao AH (H nằm giữa B và C). CMR

a. Nếu \(\frac{AH}{BH}=\frac{CH}{AH}\)thì \(\Delta ABC\)vuông

b. Nếu \(\frac{AB}{BH}=\frac{BC}{AB}\)thì \(\Delta ABC\)vuông

c. Nếu \(\frac{AB}{AH}=\frac{BC}{AC}\)thì \(\Delta ABC\)vuông

d. Nếu \(\frac{1}{AH^2}=\frac{1}{AB^2}=\frac{1}{AC^2}\)thì \(\Delta ABC\)vuông

0
14 tháng 8 2019

đề sai \(BM+CN>\frac{3}{2}BC\)\(\Leftrightarrow\)\(2BM+2CN>3BC\)\(\Leftrightarrow\)\(AB+AC>3BC\) không phải tam giác nào cũng có 3 cạnh thoả mãn bđt này, bn xem lại đề nhé

21 tháng 1 2019

đề bài có chút sai xót, sửa lại là

b) \(\frac{AM}{BN}=\left(\frac{AI}{BI}\right)^2\)