tìm các chữ số a , b , c , d biết a . \(\overline{bcd}\) . \(\overline{abc}\) = \(\overline{abcabc}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
abcabc = abc . 1000 + abc
\(\Leftrightarrow\)abcabc = abc . (1000 + 1)
Suy ra : a. bcd . abc = abcabc
\(\Leftrightarrow\)a. bcd . abc = abc . 1001
\(\Leftrightarrow\)a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 (vì từ 1 đến 9 chỉ có 7 chia hết cho 1001) từ đó suy ra bcd = 143
Vậy : a = 7 ; b = 1 ; c = 4 ; d = 3
a . abc . bcd = abcabc
a . abc . bcd = abc . 1001
=> a . bcd = 1001
7 . 143 = 1001
=> a = 7 ; b = 1 ; c 4 ; d = 3
giải
biến đổi đẳng thức thành
\(\overline{ab}.11.c=\overline{abcabc}\div\overline{abcabc=1001}\)
\(\overline{ab}.c=1001\div11=91\)
phân tích ra thừa số nguyên tố \(91=7.13\)do đó\(\overline{ab}.c\)chỉ có thể là \(13.7\)hoặc \(91.1\)
th1 cho \(\overline{ab}=13,c=7\)
th2 cho \(\overline{ab}=91,c=1\)loại vì b=c
vậy ta có \(13.77.137=137137\)
Sửa một chút nhé:
\(\overline{ab}.\overline{cc}.\overline{abc}=\overline{abcabc}\)
<=> \(\overline{ab}.\left(c.11\right).\overline{abc}=\overline{abc}.1000+\overline{abc}\)
<=> \(\overline{ab}.c.11=\overline{abc}\left(1000+1\right):\overline{abc}\)
<=> \(\overline{ab}.c.11=1001\)
<=> \(\overline{ab}.c=91\)
Ta có:
\(\overline{ab,cd}\) gấp 10 lần \(\overline{a,bcd}\)
\(\Rightarrow\)\(\overline{a,bcd}\) là 1 phần
\(\overline{ab,cd}\) là 10 phần
Từ đó hiệu số phần bằng nhau là:
\(10-1=9\)(phần)
\(\overline{a,bcd}\) là:
\(11,106:9=1,234\)
Vậy các chữ số \(a,b,c,d\) lần lượt là \(1,2,3,4\)
a ) Ta có :
\(\overline{aaa}:a\)
\(=a.1.111:a.1\)
\(=111\)
b ) Ta có :
\(\overline{abab}:\overline{ab}\)
\(=\overline{ab}.100+\overline{ab}.1:\overline{ab}\)
\(=\overline{ab}.101:\overline{ab}\)
\(=101\)
c ) Ta có :
\(\overline{abcabc}:\overline{abc}\)
\(=\overline{abc}.1000+\overline{abc}.1:\overline{abc}\)
\(=\overline{abc}.1001:\overline{abc}\)
\(=1001\)
DO A LÀ SỐ CHÍNH PHƯƠNG VÀ A KHÁC 0 , A CÓ 1 CHỮ SỐ
=> A CÓ THỂ BẰNG 1 . 4 . 9
+, TH1 : A = 1
=> 1D LÀ SỐ CHÍNH PHƯƠNG
=> D = 6
=> C6 LÀ SỐ CHÍNH PHƯƠNG
=> C = 3 HOẶC BẰNG 1( TH 1 KHÔNG THỎA MÃN)
=> 1B36 LÀ SỐ CHÍNH PHƯƠNG
=> B = 9 ( DO 44^2 = 1936
+. TH2 : A= 4
=> 4D LÀ SỐ CHÍNH PHƯƠNG
=> D = 9
=> C9 LÀ SỐ CHÍNH PHƯƠNG
=> C HOẶC BẰNG 0 , HOẶC BẰNG 4
+. NẾU C = 0
=> 4B09 LÀ SỐ CHÍNH PHƯƠNG
=> LOẠI DO KHÔNG CÓ B THỎA MÃN
+, NẾU C = 4
=> 4B49 LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TỒN TẠI B THỎA MÃN
+, A = 9
=> 9D LÀ SỐ CHÍNH PHƯƠNG
=> KHÔNG TÍM THẤY D THỎA MÃN
VẬY A= 1 , B = 9 , C=3 , D=6
a=1,4,9.
Nếu a=1→b=6→c=9, nhưng không có d thỏa mãn giả thiết
Nếu a=4→b=9, nhưng không có c thỏa mãn giả thiết.
Nếu a=9→b=, nhưng khôn có c thoản mãn giả thiết.
Vậy không tồn tại a,b,c,d thỏa đề ra !
ta có thể tách abcabc = abc . 1000 + abc (bạn thử đi đúng đấy!!!) ( nhớ abcabc phải có gạch trên đầu nha)
<=> abcabc = abc . (1000 + 1) = abc . 1001
Suy ra a . bcd . abc = abcabc
<=> a . bcd . abc = abc . 1001
<=> a . bcd = 1001
Đây là tích giữa số có 1 chữ số và số có 3 chữ số nên ta dễ dàng tìm được a = 7 ( vì từ 1 -> 9 chỉ có 1001 mới chia hết cho 7) từ đó suy ra bcd = 143
Vậy tóm lại a = 7 ; b = 1 ; c = 4 ; d = 3
tích thử lại là 7 . 143 . 714 = 714714 ( chính xác )
Chúc học tốt môn toán!!!!!!!!!!!!!!!!