Cho 3 cạnh của hình tam giác tỉ lệ với 6,7,8.Biết tổng ba cạnh là 84cm.Tính độ dài mỗi cạnh.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3 ;5;7 ta có: x 3 = y 5 = z 7
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 20
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 5 = z 7 = x + y − z 3 − 5 + 7 = 20 5 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
Gọi độ dài 3 cạnh của tam giác lần lượt là x, y, z (đơn vị: m)
Ba cạnh tỉ lệ với 3; 4; 5 => \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Cạnh lớn nhất hơn cạnh nhỏ nhất 6m => z - x = 6.
Theo tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{z-x}{5-3}=\frac{6}{2}=3\)
\(\frac{x}{3}=3\Rightarrow x=3.3=9\)
\(\frac{y}{4}=3\Rightarrow y=3.4=12\)
\(\frac{z}{5}=3\Rightarrow z=3.5=15\)
Vậy, độ dài mỗi cạnh của tam giác lần lượt là 9; 12; 15 (m)
@Nghệ Mạt
#cua
Gọi độ dài 3 cạnh tam giác lần lượt là a,b,c(a,b,c>0)
Ta có: \(\left\{{}\begin{matrix}\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}\\a+b+c=42\end{matrix}\right.\)
Áp dụng TCDTSBN ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{3+5+6}=\dfrac{42}{14}=3\)
\(\dfrac{a}{3}=3\Rightarrow a=9\\ \dfrac{b}{5}=3\Rightarrow b=15\\ \dfrac{c}{6}=3\Rightarrow c=18\)
Gọi 3 cạnh lần lượt của tam giác là a,b,c
Ta có : \(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}\) và \(a+b+c=42\)
Áp dụng tcdtsbn , ta có:
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{6}=\dfrac{a+b+c}{3+5+6}=\dfrac{42}{14}=3\)
\(\Rightarrow\left\{{}\begin{matrix}a=9\\b=15\\c=18\end{matrix}\right.\)
\(\Rightarrow\) Các cạnh lần lượt của tam giác là :....
Gọi x,y,z là ba cạnh của tam giác (x,y,z > 0)
Gỉa sử x,y,z tỉ lệ thuận với 3;4;5 ta có: x 3 = y 4 = z 5
Thì x là cạnh nhỏ nhất và z là cạnh lớn nhất của tam giác . Khi đó theo bài ta có x + z - y = 16
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
x 3 = y 4 = z 5 = x + y − z 3 − 4 + 5 = 16 4 = 4
Do đó x = 4.3 = 12
Vậy cạnh nhỏ nhất của tam giác là 12m
Đáp án cần chọn là B
\(a,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c<120)
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{a+b+c}{3+4+5}=\dfrac{120}{12}=10\\ \Rightarrow \begin{cases} a=10.3=30\\ b=10.4=40\\ c=10.5=50 \end{cases} \)
Vậy ...
\(b,\) Gọi độ dài 3 cạnh là a,b,c(cm;0<a<b<c)
\(\dfrac{a}{3}=\dfrac{b}{5}=\dfrac{c}{7}=\dfrac{c-a}{7-3}=\dfrac{80}{4}=20\\ \Rightarrow \begin{cases} a=20.3=60\\ b=20.5=100\\ c=20.7=140 \end{cases}\\ \Rightarrow P=a+b+c=300(cm)\)
Gọi a(m); b(m) và c(m) lần lượt là độ dài ba cạnh của tam giác(Điều kiện: a>0; b>0; c>0 và a<b<c)
Vì độ dài ba cạnh tỉ lệ với 3;4;5 nên a:b:c=3:4:5
hay \(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}\)
Vì cạnh lớn nhất dài hơn cạnh nhỏ nhất là 6m nên c-a=6
Áp dụng tính chất của dãy tĩ số bằng nhau, ta được:
\(\dfrac{a}{3}=\dfrac{b}{4}=\dfrac{c}{5}=\dfrac{c-a}{5-3}=\dfrac{6}{2}=3\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{a}{3}=3\\\dfrac{b}{4}=3\\\dfrac{c}{5}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=9\left(nhận\right)\\b=12\left(nhận\right)\\c=15\left(nhận\right)\end{matrix}\right.\)
Vậy: Độ dài ba cạnh của tam giác đó lần lượt là 9m; 12m và 15m