Cmr hiệu bình pương cua các số lẻ thì chia hét cho 8
B, viết 7 hàng đang thức đáng nhớ dưới dạng phân tích đa thuc thanh nhân tử
Giúp mk nhs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.Gọi 2 số lẻ là a và (a +2)
Ta có hiệu bình phương 2 số lẻ là
(a + 2) ^2 - a^2 = a^2 + 4a + 4 - a^2 = 4a + 4= 4(a+1)
Vì a là 1 số lẻ nên (a+1) là 1 số chẵn => 4(a+1) chia hết 8
b. 7 hằng đẳng thức
bài 1 : \(a^2-b^2-4ab+4\)
\(=\left(a-b\right)\left(a+b\right)-4\left(ab-1\right)\)
Câu 1:
Nhân từng hạng tử của đa thức/đơn thức này cho từng hạng tử của đa thức/đơn thức kia. Sau đó, thu gọn lại ta được kết quả cần tìm
Câu 2:
Có 7 hằng đẳng thức. Công thức:
1: \(\left(a+b\right)^2=a^2+2ab+b^2\)
2: \(\left(a-b\right)^2=a^2-2ab+b^2\)
3: \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
4: \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)
5: \(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)
6: \(a^3+b^3=\left(a+b\right)\left(a^2-ab+b^2\right)\)
7: \(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(x^2-6x+8\)
\(C1\) \(=x^2-4x-2x+8\)
\(=\left(x^2-4x\right)-\left(2x-8\right)\)
\(=x\left(x-4\right)-2\left(x-4\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
\(C2\): \(x^2-6x+8\)
\(=x^2-6x+9-1\)
\(=\left(x^2-6x+9\right)-1\)
\(=\left(x-3\right)^2-1\)
\(=\left(x-3-1\right)\left(x-3+1\right)\)
\(=\left(x-4\right)\left(x-2\right)\)
\(C3\) \(x^2-6x+8\)
\(=x^2-2x-4x+8\)
\(=\left(x^2-2x\right)-\left(4x-8\right)\)
\(=x\left(x-2\right)-4\left(x-2\right)\)
\(=\left(x-2\right)\left(x-4\right)\)
a)Gọi 2 số lẻ đó là 2a+1; 2a+3
Ta có: (2a+1)2-(2a+3)2=4a2+4a+1-(4a2+12a+9)
=4a2+4a+1-4a2-12a-9
=-8x-8=-8(a+1) chia hết 8 với mọi a
-->Đpcm
b)a2+2ab+b2=(a+b)2
a2-2ab+b2=(a-b)2
a2-b2=(a+b)(a-b)
a3+3a2b+3ab2+b3=(a+b)3
a3+b3=(a+b)(a2-ab+b2)
a3-b3=(a-b)(a2+ab+b2)