Các số sau có là số chính phương không?
a) A=3+32+33+......+320
b) B=11+112+113
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
13 + 23 = 1 + 8 = 9 = 32 (là một số chính phương)
13 + 23 + 33 = 1 + 8 + 27 = 36 = 62 (là một số chính phương)
13 + 23 + 33 + 43 = 1 + 8 + 27 + 64 = 100 = 102 (là số cp)
13 + 23 + 33 + 43 + 53 = 1 + 8 + 27 + 64 + 125 = 225 = (15)2 là số cp
Bài 2:
1262 + 1 = \(\overline{..6}\) + 1 = \(\overline{...7}\) (không phải số chính phương)
100! + 8 = \(\overline{...0}\) + 8 = \(\overline{...8}\) (không phải là số chính phương)
1012 - 3 \(\overline{..01}\) - 3 = \(\overline{...8}\) (không phải là số chính phương)
107 + 7 = \(\overline{..0}\) + 7 = \(\overline{..7}\) (không phải là số chính phương)
11 + 112 + 113 = \(\overline{..1}\)+ \(\overline{..1}\)+ \(\overline{..1}\) = \(\overline{...3}\) (không phải số chính phương)
A) \(3^2+3^3=9+27=36=6^2\) (là số chính phương)
b) \(5^2+6^2=25+36=61\) (không là số chính phương)
Lời giải:
Ta thấy
$3^2\vdots 9$
$3^3=3^2.3\vdots 9$
......
$3^{20}=3^2.3^{18}\vdots 9$
$\Rightarrow 3^2+3^3+...+3^{20}\vdots 9$
$\Rightarrow A=3+3^2+3^3+...+3^{20}$ chia hết cho 3 nhưng không chia hết cho 9
$\Rightarrow A$ không thể là số chính phương.
a) Xét các số có các chữ số tận cùng lần lượt là 0 ; 1 ; 2 ; 3 ; ... ; 9 và lấy các con số cụ thể là 0 ; 1 ; 2 ; .... ; 9
Ta có :
02 = 0
12 = 1
22 = 4
32 = 9
42 = 16
52 = 25
62 = 36
72 = 49
82 = 64
92 = 81
Qua đó ta thấy 1 số chính phương không thể có chữ số tận cùng là 2 ; 3 ; 7 và 8
b) Vì 1262 có chữ số tận cùng là 6
=> 1262 + 1 có chữ số tận cùng là 7 ( không phải số chính phương )
Ta có 10012 có chữ số tận cùng là 1
=> 10012 - 3 có chữ số tận cùng là 8 ( không phải số chính phương )
Ta có 112 và 113 đều có chữ số tận cùng là 1
=> 11 + 112 + 113 có chữ số tận cùng là 3 ( không là số chính phương )
Ta có 1010 có chữ số tận cùng là 0
=> 1010 + 7 có chữ số tận cùng là 7 ( không à số chính phương )
Ta có 5151 có chữ số tận cùng là 1
=> 5151 + 1 có chữ số tận cùng là 2 ( không là số chính phương )
Books have been one of my best friends which have supported me in every step of my life. And the one that I have the deepest impression on is “The miracle of the Namiya general store” .
The book is about three delinquents who were running away from their wrongdoings then accidentally found an old house and hid there for the night. The house turned out to be an abandoned general store where people could seek advice for their troubles by leaving a letter in the mailbox. Miracle happened when the time line somehow switched and letters from 30 years ago were delivered to them. Although none of them ever seriously considered others’ problems, something from the inside urged them to write responses to the troubled people, on behalf of Namiya – the old owner.
“ Miraculous” is exactly how I want to describe this book. No need for dogma lessons, it presents the value of kindness and compassion through different short stories that are linked perfectly together and leaves me hopeful about human nature. The past, present and future are combined flexibly, which creates many a surprise to me. How did the letters change people’s lives? Could the delinquents - whose past was covered by darkness – be awoken and open their hearts to heal the grieving souls? The story presents an open ending but I have got the answer of my own. To any book lovers especially those who have interest in soothing and touching stories, “The miracle of the Namiya general store” by Higashino Keigo is the one that should not be missed.
TƯỞNG GÌ KHÓ , THAM KHẢO NHA BẠN
a) A = 3 + 32 + 33 + ... + 320
Do các lũy thừa của 3 từ 32 trở đi đều chia hết cho 9 => 32; 33; ...; 320 đều chia hết cho 9
=> 32 + 33 + ... + 320 chia hết cho 9
Mà 3 chia hết cho 3 nhưng không chia hết cho 9
=> A chia hết cho 3 nhưng không chia hết cho 9, không là số chính phương
Câu b tương tự
a)
Ta thấy A chia hết cho 3 vì mọi số hạng của A đều chia hết cho 3
Ta có
\(3^2;3^3;.....;3^{20}\) đều chia hết cho 9
Mà 3 không chia hết cho 9
=> A không chia hết cho 9
Vì A chia hết cho 3 (số nguyên tố ) mà không chia hết cho 32 nên A không phải là số chình phương
b)
Cách 1 : Ta có
11 có tận cùng là 1
112 có tận cùng là 1
113 có tận cung là 1
=> B có tận cùng là 3 không phải số chính phương
Cách 2 : Ta có
+) B chia hết cho 11 vì mọi số hạng của B chia hết cho 11
+) 112;113 chia hết cho 112
Mặt khác 11 không chia hết cho 112
=> B không chia hết cho 112
Vì B chia hết cho 11 ( số nguyên tố ) mà không chia hết cho 112 nên B không phải là số nguyên tố
a . Ta có : \(A=3+3^2+3^3+...+3^{20}\)
\(A=3\left(1+3+3^2+3^3+3^4+..+3^{19}\right)⋮3\)
tức là \(A\) là số chính phương
b. Ta có : \(B=11+11^2+11^3\)
\(B=11\left(1+11+11^2\right)⋮11\)
tức là \(B\) là số chính phương