biết rằng đa thức: P(x) thỏa (x-6) P(x)=(x+14) P(x-3).Chứng minh đa thức P(x) có ít nhất 2 nghiệm
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh rằng đa thức Q(x) có ít nhất ba nghiệm, biết: (x^2 - 9).Q(x) = (x-1).Q(x - 4)
help
+Với x=1 ta có: \(\left(1^2-9\right).Q\left(1\right)=\left(1-1\right).Q\left(1-4\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0.Q\left(-3\right)\)
\(\Leftrightarrow-8.Q\left(1\right)=0\)
\(\Leftrightarrow Q\left(1\right)=0\)
Vậy x=1 là 1 nghiệm của đa thức Q(x).
+Với x=3 ta có: \(\left(3^2-9\right).Q\left(3\right)=\left(3-1\right).Q\left(3-4\right)\)
\(\Leftrightarrow0.Q\left(3\right)=2.Q\left(-1\right)\)
\(\Leftrightarrow2.Q\left(-1\right)=0\)
\(\Leftrightarrow Q\left(-1\right)=0\)
Vậy x=-1 là 1 nghiệm của đa thức Q(x).
+Với x=-3 ta có: \([\left(-3\right)^2-9].Q\left(-3\right)=\left(-3-1\right).Q\left(-3-4\right)\)
\(\Leftrightarrow0.Q\left(-3\right)=-4.Q\left(-7\right)\)
\(\Leftrightarrow-4.Q\left(-7\right)=0\)
\(\Leftrightarrow Q\left(-7\right)=0\)
Vậy x=-7 là 1 nghiệm của đa thức Q(x).
Suy ra: đa thức Q(x) có ít nhất 3 nghiệm.(đpcm)
*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm
đúng cái nha
Nếu x = 0
=> 0. f(1) = 2. f(0)
=> 0 = 2 . f(0)
=> f(0) = 0
=> x = 0
=> x = 0 là 1 nghiệm của đa thức f(x) ( 1 )
Nếu x = - 2
=> ( -2 ). f(- 1) = 0. f(- 2)
=> (-2 ). f(- 1 ) = 0
=> f(- 1) = 0
=> x = -1
=> x = -1 là 1 nghiệm của đa thức f(x) ( 2 )
Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1
Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1
=>2 và 1 cũng là nghiệm của B(x)
<=>B(1)=0 và B(2)=0
<=>2+a+b+4=0 và 16+4a+2b+4=0
<=>a+b=-6 và 2(2a+b)=-20
<=>a+b=-6 và 2a+b=-10
Suy ra:a=-4 và b=-2
\(x^2+6x+10=x^2+3x+3x+9+1\)
\(=\left(x^2+3x\right)+\left(3x+9\right)+1\)
\(=x\left(x+3\right)+3\left(x+3\right)+1\)
\(=\left(x+3\right)^2+1\)
mà\(\left(x+3\right)^2\ge0\)
suy ra \(\left(x+3\right)^2+1\ge1>0\)
do đó \(x^2+6x+10>0\)
vậy đa thức trên không có nghiệm