K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2019

+Với x=1 ta có: \(\left(1^2-9\right).Q\left(1\right)=\left(1-1\right).Q\left(1-4\right)\)

\(\Leftrightarrow-8.Q\left(1\right)=0.Q\left(-3\right)\)

\(\Leftrightarrow-8.Q\left(1\right)=0\)

\(\Leftrightarrow Q\left(1\right)=0\)

Vậy x=1 là 1 nghiệm của đa thức Q(x).

+Với x=3 ta có: \(\left(3^2-9\right).Q\left(3\right)=\left(3-1\right).Q\left(3-4\right)\)

\(\Leftrightarrow0.Q\left(3\right)=2.Q\left(-1\right)\)

\(\Leftrightarrow2.Q\left(-1\right)=0\)

\(\Leftrightarrow Q\left(-1\right)=0\)

Vậy x=-1 là 1 nghiệm của đa thức Q(x).

+Với x=-3 ta có: \([\left(-3\right)^2-9].Q\left(-3\right)=\left(-3-1\right).Q\left(-3-4\right)\)

\(\Leftrightarrow0.Q\left(-3\right)=-4.Q\left(-7\right)\)

\(\Leftrightarrow-4.Q\left(-7\right)=0\)

\(\Leftrightarrow Q\left(-7\right)=0\)

Vậy x=-7 là 1 nghiệm của đa thức Q(x).

Suy ra: đa thức Q(x) có ít nhất 3 nghiệm.(đpcm)

7 tháng 5 2015

*Với x=0
=> x.f(x+1) = 0.f(1)=0
=(x+3) . f(x) = 3.f(0) =0
=> f(0)=0 thì 3.f(0)=0
=> 0 là nghiệm của đa thức f(x)
* Với x=-3
=> (x+3).f(x) = (-3+3). f(-3) = 0
=> -3.f(-2) =0
=> f(-2) = thì -3.f(-2) =0
=> -2 là nghiệm của đa thức f(x)
VẬY: Đa thức f(x) có ít nhất 2 nghiệm

đúng cái nha

27 tháng 4 2019

Nếu x = 0 

=> 0. f(1) = 2. f(0)

=> 0 = 2 . f(0)

=> f(0) = 0 

=> x = 0

=> x = 0 là 1 nghiệm của đa thức f(x)                ( 1 )

Nếu x = - 2 

=> ( -2 ). f(- 1) = 0. f(- 2)

=> (-2 ). f(- 1 ) = 0

=> f(- 1) = 0 

=> x = -1

=> x = -1 là 1 nghiệm của đa thức f(x)              ( 2 )

Từ ( 1 ) và ( 2 ) => Đa thức f(x) có ít nhất 2 nghiệm là 0 và - 1

9 tháng 5 2019

Dễ thấy A(x) chỉ có 2 nghiệm là 2 và 1

=>2 và 1 cũng là nghiệm của B(x)

<=>B(1)=0 và B(2)=0

<=>2+a+b+4=0 và 16+4a+2b+4=0

<=>a+b=-6 và 2(2a+b)=-20

<=>a+b=-6 và 2a+b=-10

Suy ra:a=-4 và b=-2

13 tháng 5 2015

\(x^2+6x+10=x^2+3x+3x+9+1\)

                                        \(=\left(x^2+3x\right)+\left(3x+9\right)+1\)

                                        \(=x\left(x+3\right)+3\left(x+3\right)+1\)

                                       \(=\left(x+3\right)^2+1\)

  mà\(\left(x+3\right)^2\ge0\)

suy ra \(\left(x+3\right)^2+1\ge1>0\)

do đó \(x^2+6x+10>0\)

   vậy đa thức trên không có nghiệm

 

22 tháng 4 2016

m.n >0 thì m;n cùng dương hoặc cùng âm

ta có: (x+2)^2 >=0

xét trường hợp m;n cùng dương

m(x+2)^2 >=0 và n > 0=> m(x+2)^2 + n >0 => vô nghiệm 

xét trường hợp m;n cùng âm

m(x+2)^2 <=0 và n<0 => m(x+2)^2 + n <=0 => vô nghiệm

20 tháng 1 2016

thay x=-5/4 vào=>f(-5/4)=0
chia x-2 dư 39 =>f(2)=39
đc hệ pt bậc nhất 2 ẩn => tìm đc a và b