Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mọi người giúp mình với!!!!!!!!!!!!!!!!!!
cảm ơn mọi người
b) \(x^4+2x^2+1=0\)
\(\Rightarrow\left(x^2+1\right)^2=0\)
Mà: \(\left(x^2+1\right)^2>0\)
=> P(x) ko có nghiệm
c) \(16x^2y^5-2x^3y^2=\dfrac{15}{4}\)
a: \(P\left(x\right)=\left(2x^4-2x^4\right)+\left(5x^3-x^3-4x^3\right)-x^2+3x^2+1=2x^2+1\)
b: P(1)=P(-1)=2+1=3
c: Vì \(2x^2+1>0\forall x\)
nên P(x) ko có nghiệm
để đa thức x+4x2+8 có nghiệm suy ra x+4x2 +8 =0 ,x+4x2=-8 vô lí vì 4x>0
suy ra pt không có nghiệm
4x^2+x+8=(4x^2+2*2x*1/4+1/16)+8-1/16=(2x+1/4)^2+7,9375>0 vói mọi x
suy ra M(x)=4x^2+x+8 vô nghiệm
\(2x^2+10x+15=0\)
\(\Leftrightarrow2.\left(x^2+5x+\frac{15}{2}\right)=0\Leftrightarrow x^2+5x+\frac{15}{2}=0\)
\(\Leftrightarrow x^2+5x+\frac{25}{4}+\frac{6}{4}=0\)
\(\Leftrightarrow\left(x+\frac{5}{2}\right)^2=-\frac{6}{4}\)
Vậy...
\(f\left(x\right)=x^2+x^2+4x+6x+4+9+2\)
\(=\left(x^2+4x+4\right)+\left(x^2+6x+9\right)+2\)
\(=\left(x+2\right)^2+\left(x+3\right)^2+2>0\)
Vậy đa thức trên ko có ngiệm
Câu 1:
a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)
\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)
\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)
\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)
\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)
c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)
\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)
\(P\left(0\right)=0\)
\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)
\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)
\(Q\left(0\right)=-\frac{1}{4}\)
Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)
Để x là nghiệm của đa thức
=>5x+10x2=0
=>5x.(1+2x)=0
=>5x=0=>x=0
hoặc 1+2x=0=>2x=-1=>x=-1/2
Vậy x=0,x=-1/2 là nghiệm của đa thức.
\(x^2+6x+10=x^2+3x+3x+9+1\)
\(=\left(x^2+3x\right)+\left(3x+9\right)+1\)
\(=x\left(x+3\right)+3\left(x+3\right)+1\)
\(=\left(x+3\right)^2+1\)
mà\(\left(x+3\right)^2\ge0\)
suy ra \(\left(x+3\right)^2+1\ge1>0\)
do đó \(x^2+6x+10>0\)
vậy đa thức trên không có nghiệm