K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 7 2016

ĐK: 2x23x40,x12x2−3x−4≥0,x≥1

PTx2+x1+2x(x1)(x+1)=2x23x4⇔x2+x−1+2x(x−1)(x+1)=2x2−3x−4

x24x3=2(x2x)(x+1)⇔x2−4x−3=2(x2−x)(x+1)

(x2x)3(x+1)=2(x2x)(x+1)⇔(x2−x)−3(x+1)=2(x2−x)(x+1)

Đặt x2x=a0,x+1=b>0x2−x=a≥0,x+1=b>0

Khi đó ta có: a23b2=2aba2−3b2=2ab

(ab)22.ab3=0⇒(ab)2−2.ab−3=0

ab=3⇔ab=3 hoặc ab=1ab=−1(loại vì a,b>0a,b>0)

ab=3x2x=3x+1

Câu 4:

Giả sử điều cần chứng minh là đúng

\(\Rightarrow x=y\), thay vào điều kiện ở đề bài, ta được:

\(\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}=\sqrt{x+2014}+\sqrt{2015-x}-\sqrt{2014-x}\) (luôn đúng)

Vậy điều cần chứng minh là đúng

3 tháng 2 2021

2) \(\sqrt{x^2-5x+4}+2\sqrt{x+5}=2\sqrt{x-4}+\sqrt{x^2+4x-5}\)

⇔ \(\sqrt{\left(x-4\right)\left(x-1\right)}-2\sqrt{x-4}+2\sqrt{x+5}-\sqrt{\left(x+5\right)\left(x-1\right)}=0\)

⇔ \(\sqrt{x-4}.\left(\sqrt{x-1}-2\right)-\sqrt{x+5}\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left(\sqrt{x-4}-\sqrt{x+5}\right)\left(\sqrt{x-1}-2\right)=0\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}-\sqrt{x+5}=0\\\sqrt{x-1}-2=0\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\sqrt{x-4}=\sqrt{x+5}\\\sqrt{x-1}=2\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}x\in\varnothing\\x=5\end{matrix}\right.\)

⇔ x = 5

Vậy S = {5}

8 tháng 2 2023

Gõ đề có sai không ạ?

\(\left\{{}\begin{matrix}\sqrt{3+2x^2y-x^4y^2}+x^4\left(1-2x^2\right)=y^4\\1+\sqrt{1+\left(x-y\right)^2}=x^3\left(x^3-x+2y^2\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2x^6-x^4+y^4\\-\sqrt{1+\left(x-y\right)^2}=1-x^6+x^4-2x^3y^2\end{matrix}\right.\)

Cộng theo vế HPT2

\(\sqrt{4-\left(1-x^2y\right)^2}-\sqrt{1+\left(x-y\right)^2}=\left(x^3-y^2\right)^2+1\)

\(\Leftrightarrow\sqrt{4-\left(1-x^2y\right)^2}=\sqrt{1+\left(x-y\right)^2}+\left(x^3-y^2\right)^2+1\) (1)

Có:

\(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}\le2\\\sqrt{1+\left(x-y\right)^2}+\left(x^2-y^2\right)^2+1\ge2\end{matrix}\right.\)

\(\Rightarrow\) (1) xảy ra \(\Leftrightarrow\) \(\left\{{}\begin{matrix}\sqrt{4-\left(1-x^2y\right)^2}=2\\\sqrt{1+\left(x-y\right)^2}=1\\\left(x^3-y^2\right)^2=0\end{matrix}\right.\Leftrightarrow x=y=1\)

 

 

NV
15 tháng 3 2022

ĐKXĐ: \(\left[{}\begin{matrix}x=0\\x\ge3\end{matrix}\right.\)

Với \(x=0\) là nghiệm

Với \(x\ge3\), chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{x+1}+\sqrt{x+2}=\sqrt{x-3}\)

\(\Leftrightarrow\sqrt{x+1}+\sqrt{x+2}-\sqrt{x-3}=0\)

\(\Leftrightarrow\sqrt{x+1}+\dfrac{5}{\sqrt{x+2}+\sqrt{x-3}}=0\) (vô nghiệm do vế trái luôn dương)

Vậy pt có nghiệm duy nhất \(x=0\)

16 tháng 4 2021

Đặt \(x+y=a\)   ;  \(\sqrt{x+1}=b\)

Ta được hpt sau:

\(\left\{{}\begin{matrix}2a+b=4\\a-3b=-5\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a=1\\b=2\end{matrix}\right.\)

\(\Rightarrow\sqrt{x+1}=2\)

\(\Leftrightarrow x=3\)

\(\Rightarrow y=-2\)