K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 1 2017

Qua O vẽ OH ⊥ AB và OK ⊥ AD ⇒ OH ⊥ DC, OK ⊥ BC

Gọi I, L lần lượt là giao điểm của OK, OH với DC, BC. Ta có:

+ S_ABCD = AB.IH = BC.KL

+ S_ABO = 1/2 AB.OH và S_CDO = 1/2 DC.OI

⇒ S_ABO + S_CDO = 1/2 AB.OH + 1/2 DC.OI

= 1/2 AB.OH + 1/2 AB.OI

= 1/2 AB (OH + OI) = 1/2 AB.IH = 1/2 S_ABCD (1)

+ S_BCO = 1/2 BC.OL và S_DAO = 1/2 AD.OK

⇒ S_BCO + SDAO = 1/2 BC.OL + 1/2AD.OK

= 1/2 BC.OL + 1/2BC.OK

= 1/2BC(OL + OK) = 1/2 BC.KL = 1/2S_ABCD (2)

Từ (1) và (2) ta có: S_ABO + S_CDO = S_BCO + S_DAO

  
23 tháng 10 2019

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Gọi OH, OK lần lượt là chiều cao của tam giác AOB và tam giác DOC.

Ta có: OK ⊥ CD, CD // AB ⇒ OK ⊥ AB ⇒ O, H, K thẳng hàng.

Do đó:

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Mà SABCD = SAOB + SBOC + SCOD + SDOA

Giải bài 44 trang 133 Toán 8 Tập 1 | Giải bài tập Toán 8

Do đó SAOB + SCOD = SBOC + SDOA.

22 tháng 4 2017

Từ O lẻ đường thẳng d vuông góc với AB ở H1, cắt CD ở H2.

Ta có OH1 ⊥ AB

Mà AB // CD

Nên OH2 ⊥ CD

Do đó: SABO + SCDO = \(\dfrac{1}{2}\)OH1 . AB + \(\dfrac{1}{2}\) OH2 . CD

= \(\dfrac{1}{2}\)AB (OH1 + OH2)

= \(\dfrac{1}{2}\)AB . H1 . H2

Nên \(S_{ABO}+S_{CDO}=\dfrac{1}{2}S_{ABCD}\) ( 1)

Tương tự \(S_{BCO}+S_{DAO}=\dfrac{1}{2}S_{ABCD}\) (2)

Từ (1) và (2) suy ra :

\(S_{ABO}+S_{CDO}=S_{BCO}+S_{DAO}\)

7 tháng 6 2021

A B C D O E F H K

Ta có SABO = OE.AB : 2

Vì \(\hept{\begin{cases}AB//CD\\\widehat{AEO}=90^{\text{o}}\end{cases}}\Rightarrow\widehat{CFO}=90^{\text{o}}\)

=> SCDO = OF.CD : 2 = OF.AB : 2 

=> SABO + SCDO = EF.AB : 2 = \(\frac{1}{2}S_{ABCD}\)(Vì EF là đường cao hình bình hành ABCD => SABCD = EF.AB)   

Tương tự ta được

SBCO + SDAO =  HK.BC : 2 = \(\frac{1}{2}S_{ABCD}\)(HK đường cao hình bình hành ABCD => SABCD = HK.BC) 

=> SABO + SCDO = SBCO + SDAO (= \(\frac{1}{2}S_{ABCD}\)) => ĐPCM

7 tháng 1 2016

Qua O vẽ OH ⊥ AB và OK ⊥ AD ⇒  OH ⊥ DC, OK ⊥ BC

Gọi I, L lần lượt là giao điểm của OK, OH với DC, BC. Ta có:

+ SABCD = AB.IH = BC.KL

+ SABO = 1/2 AB.OH và SCDO = 1/2 DC.OI

⇒ SABO + SCDO = 1/2 AB.OH + 1/2 DC.OI

= 1/2 AB.OH + 1/2 AB.OI

= 1/2 AB (OH + OI) = 1/2 AB.IH = 1/2 SABCD (1)

+ SBCO = 1/2 BC.OL và SDAO = 1/2 AD.OK

⇒ SBCO + SDAO = 1/2 BC.OL + 1/2AD.OK

= 1/2 BC.OL + 1/2BC.OK

= 1/2BC(OL + OK) = 1/2 BC.KL = 1/2SABCD (2)

Từ (1) và (2) ta có: SABO + SCDO = SBCO + SDAO

20 tháng 6 2023

Có:

\(\dfrac{S_{DAO}}{S_{ABO}}=\dfrac{DO}{BO}=\dfrac{S_{CDO}}{S_{BCO}}\) , tức là \(S_{DAO}.S_{BCO}=S_{ABO}.S_{CDO}\)

Do đó:

\(S_{ABO}.S_{BCO}.S_{CDO}.S_{DAO}=\left(S_{DAO}+S_{BCO}\right)^2\)

Vậy tích các số đo diện tích của các tam giác ABO, BCO, CDO, DAO là một số chính phương.

22 tháng 6 2018

Bạn tự vẽ hình nha

- Nếu O thuộc BD ta hiển nhiên có điều phải chứng minh

- Nếu O không thuộc BD

Giả sử BD cắt OA, OC lần lượt tại E, F

Từ D và B kẻ các đường vuông góc DH, BK xuống AO với H,K thuộc AO

Ta có : \(S_{OAD}=S_{OAB}\)mà hai tam giác này có chung đáy OA ⇒DH=BK

Xét tam giác DHE vuông tại H và tam giác BKE vuông tại K có:

DH=BK

\(\widehat{EDH}=90^o-\widehat{DEH}=90^o-\widehat{BEK}=\widehat{EBK}\)

\(\Rightarrow\Delta EDH=\Delta EBK\)

\(\Rightarrow DE=EB\)

Tương tự \(S_{ODC}=S_{OBC}\Rightarrow DF=FB\)

\(\Rightarrow E\equiv F\)

O, C, F thẳng hàng ; O, E, A thẳng hàng ; E = F ⇒⇒ A, C, O, E thẳng hàng. Vậy O thuộc đường chéo AC.

1 tháng 7 2018

kuihihuolu uh

]o-][[p[po[]\[]iy89t768r67r675r65r67r5676666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666666