2.1 Tìm x biết |2x-3|-|3x+2|=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^3+3x^2+3x+2=0\)
<=> \(x^3+x^2+x+2x^2+2x+2=0\)
<=> \(x\left(x^2+x+1\right)+2\left(x^2+x+1\right)=0\)
<=> \(\left(x+2\right)\left(x^2+x+1\right)=0\)
tự làm
b) \(x^4-2x^3+2x-1=0\)
<=> \(\left(x^4-3x^3+3x^2-x\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(x\left(x^3-3x^2+3x-1\right)+\left(x^3-3x^2+3x-1\right)=0\)
<=> \(\left(x^3-3x^2+3x-1\right)\left(x+1\right)=0\)
<=> \(\left(x-1\right)^3\left(x+1\right)=0\)
tự làm
c) \(x^4-3x^3-6x^2+8x=0\)
<=> \(x\left(x^3-3x^2-6x+8\right)=0\)
<=> \(x\left[\left(x^3+x^2-2x\right)-\left(4x^2+4x-8\right)\right]=0\)
<=>\(x\left[x\left(x^2+x-2\right)-4\left(x^2+x-2\right)\right]=0\)
<=> \(x\left(x-4\right)\left(x^2+x-2\right)=0\)
<=> \(x\left(x-4\right)\left(x-1\right)\left(x+2\right)=0\)
tự làm
a, \(2x^3+3x^2=2x+3\)
\(\Rightarrow2x^3-2x+3x^2-3=0\)
\(\Rightarrow2x\left(x^2-1\right)+3\left(x^2-1\right)=0\)
\(\Rightarrow\left(x^2-1\right)\left(2x+3\right)=0\)
Nếu \(x^2-1=0\Rightarrow x\in1;-1\)
Nếu \(2x+3=0\Rightarrow x=\frac{-3}{2}\)
Vậy.............
b. \(2x^4-3^3=2x+3\)
\(\Rightarrow2x^4-3^3-2x-3=0\)
\(\Rightarrow2x\left(x^3-1\right)=24\)
\(\Rightarrow x\left(x^3-1\right)=12\)
Tách 12=1.12=12.1=2.6=6.2=3.4=4.3
=-1.-12=-12.-1=-2.-6=-6.-2=-4.-3=-3.-4
rồi pn thử các trường hợp ra, hơi dài nên mk k tính
c. \(3x^3-4x^2=6x-8\)
\(\Rightarrow3x^3-4x^2-6x+8=0\)
\(\Rightarrow3x\left(x^2-2\right)-4\left(x^2-2\right)=0\)
\(\Rightarrow\left(x^2-2\right)\left(3x-4\right)=0\)
Nếu \(x^2-2=0\Rightarrow x=\sqrt{2};-\sqrt{2}\)
Nếu \(3x-4=0\Rightarrow x=\frac{4}{3}\)
Vậy...............
a: \(\Leftrightarrow\left(x+2\right)\left(x+2-2x+10\right)=0\)
\(\Leftrightarrow x\in\left\{-2;12\right\}\)
x2( x + 1 ) + 2x( x + 1 ) = 0 <=> x( x + 1 )( x + 2 ) = 0 <=> x = 0 hoặc x = -1 hoặc x = -2
x( 3x - 1 ) - 5( 1 - 3x ) = 0 <=> x( 3x - 1 ) + 5( 3x - 1 ) = 0 <=> ( 3x - 1 )( x + 5 ) = 0 <=> x = 1/3 hoặc x = -5
Trả lời:
1, \(x^2\left(x+1\right)+2x\left(x+1\right)=0\)
\(\Leftrightarrow x\left(x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow x=0;x=-1;x=-2\)
Vậy x = 0; x = - 1; x = - 2 là nghiệm của pt.
2, \(x\left(3x-1\right)-5\left(1-3x\right)=0\)
\(\Leftrightarrow x\left(3x-1\right)+5\left(3x-1\right)=0\)
\(\Leftrightarrow\left(3x-1\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}3x-1=0\\x+5=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{3}\\x=-5\end{cases}}}\)
Vậy x = 1/3; x = - 5 là nghiệm của pt.
1)2x3+3x2+2x+3=0
=> (2x3+3x2)+(2x+3)=0
=> x2(2x+3)+(2x+3)=0
=> (2x+3)(x2+1)=0
=>\(\hept{\begin{cases}2x+3=0\\x^2+1=0\end{cases}}\)=>\(\hept{\begin{cases}2x=-3\\x^2=-1\end{cases}}\)=>\(\hept{\begin{cases}x=\frac{-3}{2}\\vo.nghiem\end{cases}}\)
Vậy x=-3/2
2)x2-3x-18=0
=> (x2+3x)-(6x+18)=0
=> x(x+3)-6(x+3)=0
=> (x+3)(x-6)=0
=> \(\hept{\begin{cases}x+3=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=-3\\x=6\end{cases}}\)
Vậy x=-3 hoặc x=6
3)Sai đề rồi bạn, 30 thành 30x mới đúng
x3-11x2+30x=0
=> x(x2-11x+30)=0
=> x[(x2-5x)-(6x-30)]=0
=> x[x(x-5)-6(x-5)]=0
=> x(x-5)(x-6)=0
=>\(\hept{\begin{cases}x=0\\x-5=0\\x-6=0\end{cases}}\)=>\(\hept{\begin{cases}x=0\\x=5\\x=6\end{cases}}\)
Vậy x=0 hoặc x=5 hoặc x=6
b
\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)
Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)
a
Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)
\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)
Với \(x\ge4\) ta có:
\(3x-12+4x=2x-2\)
\(\Rightarrow5x=10\)
\(\Rightarrow x=2\left(KTMĐK\right)\)
Với \(x< 4\) ta có:
\(12-3x+4x=2x-2\)
\(\Rightarrow10=x\left(KTMĐK\right)\)
a. 3x(x-2)-x+2=0
3x(x-2)-(x-2)=0
(3x-1)(x-2)=0
=>\(\hept{\begin{cases}3x-1=0\\x-2=0\end{cases}}\)
=> \(\hept{\begin{cases}3x=1\\x=2\end{cases}}\)
=>\(\hept{\begin{cases}x=\frac{1}{3}\\x=2\end{cases}}\)
vậy x thuộc (1/3;2)
\(2x^3-3x^2+3x-1=0\)
\(\Leftrightarrow2x^3-2x^2-x^2+2x+x-1=0\)
\(\Leftrightarrow\left(2x^3-2x^2+2x\right)-\left(x^2-x+1\right)=0\)
\(\Leftrightarrow2x\left(x^2-x+1\right)-\left(x^2-x+1\right)=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x^2-x+1\right)=0\)
\(TH1:2x-1=0\Leftrightarrow x=\frac{1}{2}\)
\(TH2:x^2-x+1=0\)
\(\Leftrightarrow\left(x-\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Mà \(\left(x-\frac{1}{2}\right)^2+\frac{3}{4}>0\)nên loại TH2
Vậy \(x=\frac{1}{2}\)
2x3 - 3x2 + 3x - 1 = 0
(2x - 1)(x2 - x + 1) = 0
Vì: x2 - x + 1 > 0 nên:
2x - 1 = 0
2x = 0 + 1
2x = 1
x = 1/2
2x+3-3x+2=0
2x-3x+3+2=0
-x+5=0
-x=0-5
-x=-5
suy ra x=5
\(\left|2x-3\right|-\left|3x+2\right|=0\)
\(\Leftrightarrow\left|2x-3\right|=\left|3x+2\right|\)
TH1 : \(2x-3=3x+2\Leftrightarrow x=-5\)
TH2 : \(2x-3=-3x-2\Leftrightarrow5x=1\Leftrightarrow x=\frac{1}{5}\)