So sánh :
a. \(\log_23\) và \(\log_311\)
b. \(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có \(\log_32<\log_33=1=\log_22<\log_23\)
b) \(\log_23<\log_24=2=\log_39<\log_311\)
c) Đưa về cùng 1 lôgarit cơ số 10, ta có
\(\frac{1}{2}+lg3=\frac{1}{2}lg10+lg3=lg3\sqrt{10}\)
\(lg19-lg2=lg\frac{19}{2}\)
So sánh 2 số \(3\sqrt{10}\) và \(\frac{19}{2}\) ta có :
\(\left(3\sqrt{10}\right)^2=9.10=90=\frac{360}{4}<\frac{361}{4}=\left(\frac{19}{2}\right)^2\)
Vì vậy : \(3\sqrt{10}<\frac{19}{2}\)
Từ đó suy ra \(\frac{1}{2}+lg3\)<\(lg19-lg2\)
d) Ta có : \(\frac{lg5+lg\sqrt{7}}{2}=lg\left(5\sqrt{7}\right)^{\frac{1}{2}}=lg\sqrt{5\sqrt{7}}\)
Ta so sánh 2 số : \(\sqrt{5\sqrt{7}}\) và \(\frac{5+\sqrt{7}}{2}\)
Ta có :
\(\sqrt{5\sqrt{7}}^2=5\sqrt{7}\)
\(\left(\frac{5+\sqrt{7}}{2}\right)^2=\frac{32+10\sqrt{7}}{4}=8+\frac{5}{2}\sqrt{7}\)
\(8+\frac{5}{2}\sqrt{7}-5\sqrt{7}=8-\frac{5}{2}\sqrt{7}=\frac{16-5\sqrt{7}}{2}=\frac{\sqrt{256}-\sqrt{175}}{2}>0\)
Suy ra : \(8+\frac{5}{2}\sqrt{7}>5\sqrt{7}\)
Do đó : \(\frac{5+\sqrt{7}}{2}>\sqrt{5\sqrt{7}}\)
và \(lg\frac{5+\sqrt{7}}{2}>\frac{lg5+lg\sqrt{7}}{2}\)
\(\sqrt{\frac{\left(-5\right)^2}{7}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{7}}=\frac{|5|}{\sqrt{7}}=\frac{5\sqrt{7}}{7}\)
\(\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}=\frac{\sqrt{\left(-5\right)^2}}{\sqrt{49}}=\frac{|5|}{|7|}=\frac{5}{7}\)
\(\frac{5\sqrt{7}}{7}>\frac{5}{7}\leftrightarrow\sqrt{\frac{\left(-5\right)^2}{7}}>\frac{-\sqrt{\left(-5\right)^2}}{-\sqrt{49}}\)
Ta có
\(A=\frac{\left(3\frac{2}{5}+\frac{1}{5}\right):2\frac{1}{2}}{\left(5\frac{3}{7}-2\frac{1}{4}\right):4\frac{43}{56}}\) \(B=\frac{1,2:\left(1\frac{1}{5}-1\frac{1}{4}\right)}{0,32+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\left(\frac{17}{5}+\frac{1}{5}\right):\frac{5}{2}}{\left(\frac{38}{7}-\frac{9}{4}\right):\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(\frac{6}{5}-\frac{5}{4}\right)}{\frac{8}{25}+\frac{2}{25}}\)
\(\Leftrightarrow A=\frac{\frac{18}{5}:\frac{5}{2}}{\frac{89}{28}:\frac{276}{56}}\) \(\Leftrightarrow B=\frac{\frac{6}{5}:\left(-\frac{1}{20}\right)}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{\frac{36}{25}}{\frac{89}{138}}\) \(\Leftrightarrow B=\frac{\frac{5}{4}}{\frac{2}{5}}\)
\(\Leftrightarrow A=\frac{4968}{2225}\) \(\Leftrightarrow B=\frac{25}{8}\)
\(\Leftrightarrow A=\frac{39744}{17800}\) \(\Leftrightarrow B=\frac{55625}{17800}\)
Ta có: 39744<55625
\(\Rightarrow A< B\)
Vậy A<B
A =\(\frac{\left(\frac{17}{5}+\frac{1}{5}\right).\frac{2}{5}}{\left(\frac{38}{7}-\frac{9}{4}\right).\frac{56}{267}}\)
A=\(\frac{36}{25}\).\(\frac{3}{2}\)=\(\frac{54}{25}\)=2,16
B=\(\frac{1,2:\left(\frac{6}{5}-\frac{5}{4}\right)}{0,32+\frac{2}{25}}\)=-24.\(\frac{5}{2}\)=-60
vì 2,16 > -60 Vậy A>B
\(tacó:...\frac{1}{3.\left(\sqrt{1}+\sqrt{2}\right)}>\frac{1}{3.2}=\frac{1}{\left(1+2.1\right).2.1}\)
\(\frac{1}{5.\left(\sqrt{2}+\sqrt{3}\right)}>\frac{1}{5.4}=\frac{1}{\left(1+2.2\right).2.2}\)
\(\frac{1}{7.\left(\sqrt{3}+\sqrt{4}\right)}>\frac{1}{7.6}=\frac{1}{\left(1+2..3\right).2.3}\)
....
\(\frac{1}{49.\left(\sqrt{48}+\sqrt{49}\right)}>\frac{1}{49.48}=\frac{1}{\left(1+2.48\right).2.48}\)
cộng vế theo vế ta đươc S =\(\frac{1}{\left(1+2.1\right).2}+\frac{1}{\left(1+2.2\right).2.2}+...+\frac{1}{\left(1+2.48\right).48.2}\)
\(=\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{10}+\frac{1}{21}+\frac{1}{36}+...+\frac{1}{4656}\right)\) < \(\frac{1}{2}.\left(\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+...+\frac{1}{4656}\right)\)
mà lại có : \(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+\frac{1}{15}+..+\frac{1}{4656}\)
=> \(\frac{1}{2}A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+...+\frac{1}{9312}=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{96.97}\)
= \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...-\frac{1}{97}=\frac{1}{2}-\frac{1}{97}=\frac{95}{194}\)
vậy S < \(\frac{95}{194}\)
mà \(\frac{95}{194}< \frac{3}{7}\)
=> S < \(\frac{3}{7}\)
KẾT LUẬN : S <\(\frac{3}{7}\)
B3: \(\sqrt{x^4-4x^3+2x^2+4x+1}=3x-1\)
\(pt\Leftrightarrow x^4-4x^3+2x^2+4x+1=\left(3x-1\right)^2\)
\(\Leftrightarrow x^4-4x^3+2x^2+4x+1=9x^2-6x+1\)
\(\Leftrightarrow x^4-4x^3-7x^2+10x=0\)
\(\Leftrightarrow x\left(x^3-4x^2-7x+10\right)=0\)
\(\Leftrightarrow x\left(x-1\right)\left(x-5\right)\left(x+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x=5\end{cases}}\) (thỏa mãn (mấy cái kia loại hết))
a. \(\log_23\) và \(\log_311\)
Ta có : \(\log_23< \log_24=4=\log_39< \log_311\Rightarrow\log_23< \log_211\)
b.\(\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}\) và 1
Ta có : \(\begin{cases}\frac{-\sqrt{5}}{2}< 0\\0< \frac{5}{7}< 1\end{cases}\)\(\Rightarrow\left(\frac{5}{7}\right)^{\frac{-\sqrt{5}}{2}}>\left(\frac{5}{7}\right)^0=1\)