Chứng minh rằng A là số chính phương:
1. A= 111...1 222...25 gồm 9 chữ số 1 và 10 chữ số 2
2. A= 999...9 8000..01 gồm 9 chữ số 9 và 9 chữ số 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)a=111...111-222...222
=1111...111-2*111...111(số bị trừ có 2n chữ số 1,số trừ có n chữ số 1)
=111...111*100..01-2*1111...111(số bị trừ có n chữ số 1 và số trừ cũng thế)
=111...111(100...01-2)
=111...111*999...99 ( n chữ số 1,n chữ số 9)
=(111...11*3)*333...33
=333...333*333...333(cả 2 thừa số đều có n chữ số 3)
4,5C=9+99+999+...+99999...99(40 chữ số 9)
4,5C+40=(9+1)+(99+1)+...+(99999999....9+1)
4,5C+40=10+100+1000+...+1000000...00(40 chữ số 0)
4,5C+40=10+102+103+...+1040
4,5C+40=1041-10
C=(1041-10)-40:4,5
A = 99...9800...01 ( n thuộc N sao )
= 99...9 . \(10^{n+2}\)+ 8.\(10^{n+1}\)+1
= (\(10^{n-1}\) - 1).\(10^{n+2}\)+ 8.\(10^{n+1}\) + 1
= \(10^{2n+2}\)+ - 10.\(10^{n+1}\)+ 8.\(10^{n+1}\)+ 1
= \(10^{2n+2}\) - 2.\(10^{n+1}\)+ 1
= (\(10^{n+1}\) - 1)²
Hok tốt~